in

Endangered animals and plants are positively or neutrally related to wild boar (Sus scrofa) soil disturbance in urban grasslands

  • Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).

    Article 

    Google Scholar 

  • Planchuelo, G., von Der Lippe, M. & Kowarik, I. Untangling the role of urban ecosystems as habitats for endangered plant species. Landsc. Urban Plan. 189, 320–334 (2019).

    Article 

    Google Scholar 

  • Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Environ. 17, 225–231 (2019).

    Article 

    Google Scholar 

  • Ducatez, S., Sayol, F., Sol, D. & Lefebvre, L. Are urban vertebrates city specialists, artificial habitat exploiters, or environmental generalists? Integr. Comp. Biol. 58, 929–938 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Hegglin, D. et al. Baiting red foxes in an urban area: A camera trap study. J. Wildl. Manag. 68, 1010–1017 (2004).

    Article 

    Google Scholar 

  • Møller, A. P. Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia 159, 849–858 (2009).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Castillo-Contreras, R. et al. Wild boar in the city: Phenotypic responses to urbanisation. Sci. Total Environ. 773, 145593 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barrios-Garcia, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).

    Article 

    Google Scholar 

  • Cahill, S., Llimona, F., Cabaneros, L. & Calomardo, F. Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim. Biodivers. Conserv. 35, 221–233 (2012).

    Article 

    Google Scholar 

  • Csokas, A. et al. Space use of wild boar (Sus Scrofa) in Budapest: Are they resident or transient city dwellers? Biol. Futura 71, 39–51 (2020).

    CAS 
    Article 

    Google Scholar 

  • Stillfried, M. et al. Do cities represent sources, sinks or isolated islands for urban wild boar population structure? J. Appl. Ecol. 54, 272–281 (2017).

    Article 

    Google Scholar 

  • Stillfried, M. et al. Secrets of success in a landscape of fear: Urban wild boar adjust risk perception and tolerate disturbance. Front. Ecol. Evol. 5, 440 (2017).

    Article 

    Google Scholar 

  • Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).

    Article 

    Google Scholar 

  • Herrero, J., Garcia-Serrano, A., Couto, S., Ortuno, V. M. & Garcia-Gonzalez, R. Diet of wild boar Sus scrofa L. and crop damage in an intensive agroecosystem. Eur. J. Wildl. Res. 52, 245–250 (2006).

    Article 

    Google Scholar 

  • Schley, L. & Roper, T. J. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mamm. Rev. 33, 43–56 (2003).

    Article 

    Google Scholar 

  • Horčičková, E., Brůna, J. & Vojta, J. Wild boar (Sus scrofa) increases species diversity of semidry grassland: Field experiment with simulated soil disturbances. Ecol. Evol. 9, 2765–2774 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Massei, G. & Genov, P. V. The environmental impact of wild boar. Galemys Bol. Inf. Soc. Esp. Para Conserv. Estud. Los Mamíferos 16, 135–145 (2004).

    Google Scholar 

  • Sandom, C. J., Hughes, J. & Macdonald, D. W. Rewilding the scottish highlands: Do wild boar, Sus scrofa, use a suitable foraging strategy to be effective ecosystem engineers? Restor. Ecol. 21, 336–343 (2013).

    Article 

    Google Scholar 

  • Wirthner, S. et al. Do changes in soil properties after rooting by wild boars (Sus scrofa) affect understory vegetation in Swiss hardwood forests? Can. J. For. Res.-Rev. Can. Rech. For. 42, 585–592 (2012).

    CAS 
    Article 

    Google Scholar 

  • Bankovich, B., Boughton, E., Boughton, R., Avery, M. L. & Wisely, S. M. Plant community shifts caused by feral swine rooting devalue Florida rangeland. Agric. Ecosyst. Environ. 220, 45–54 (2016).

    Article 

    Google Scholar 

  • Felix, R. K., Orzell, S. L., Tillman, E. A., Engeman, R. M. & Avery, M. L. Fine-scale, spatial and temporal assessment methods for feral swine disturbances to sensitive plant communities in south-central Florida. Environ. Sci. Pollut. Res. 21, 10399–10406 (2014).

    Article 

    Google Scholar 

  • Boonman-Berson, S., Driessen, C. & Turnhout, E. Managing wild minds: From control by numbers to a multinatural approach in wild boar management in the Veluwe, the Netherlands. Trans. Inst. Br. Geogr. 44, 2–15 (2019).

    Article 

    Google Scholar 

  • Keuling, O., Strauß, E. & Siebert, U. Regulating wild boar populations is ‘somebody else’s problem’!-Human dimension in wild boar management. Sci. Total Environ. 554–555, 311–319 (2016).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Brunet, J., Hedwall, P. O., Holmstrom, E. & Wahlgren, E. Disturbance of the herbaceous layer after invasion of an eutrophic temperate forest by wild boar. Nord. J. Bot. 34, 120–128 (2016).

    Article 

    Google Scholar 

  • Burrascano, S. et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecol. 16, 244–253 (2015).

    Article 

    Google Scholar 

  • Fagiani, S. et al. Monitoring protocols for the evaluation of the impact of wild boar (Sus scrofa) rooting on plants and animals in forest ecosystems. Hystrix Ital. J. Mamm. 25, 31–38 (2014).

    Google Scholar 

  • Bruinderink, G. W. T. A. G. & Hazebroek, E. Wild boar (Sus scrofa scrofa L.) rooting and forest regeneration on podzolic soils in the Netherlands. For. Ecol. Manag. 88, 71–80 (1996).

    Article 

    Google Scholar 

  • Pankova, N. L., Markov, N. I. & Vasina, A. L. Effect of the rooting activity of wild boar Sus scrofa on plant communities in the middle Taiga of Western Siberia. Russ. J. Biol. Invasions 11, 363–371 (2020).

    Article 

    Google Scholar 

  • Carpio, A. J. et al. Effect of wild ungulate density on invertebrates in a Mediterranean ecosystem. Anim. Biodivers. Conserv. 37, 115–125 (2014).

    Article 

    Google Scholar 

  • Cuevas, M. F., Novillo, A., Campos, C., Dacar, M. A. & Ojeda, R. A. Food habits and impact of rooting behaviour of the invasive wild boar, Sus scrofa, in a protected area of the Monte Desert, Argentina. J. Arid Environ. 74, 1582–1585 (2010).

    ADS 
    Article 

    Google Scholar 

  • Kenyeres, Z., Szabo, S. & Bauer, N. Conservation possibilities of the rare grasshopper Stenobothrus eurasius Zubovski, 1898 are hampered by wild game in its fragmented western outposts. J. Insect Conserv. 24, 115–124 (2020).

    Article 

    Google Scholar 

  • Reading, C. J. & Jofre, G. M. Habitat use by grass snakes and three sympatric lizard species on lowland heath managed using ‘conservation grazing’. Herpetol. J. 26, 131–138 (2016).

    Google Scholar 

  • de Schaetzen, F., van Langevelde, F. & WallisDeVries, M. F. The influence of wild boar (Sus scrofa) on microhabitat quality for the endangered butterfly Pyrgus malvae in the Netherlands. J. Insect Conserv. 22, 51–59 (2018).

    Article 

    Google Scholar 

  • Albrecht, H. & Haider, S. Species diversity and life history traits in calcareous grasslands vary along an urbanization gradient. Biodivers. Conserv. 22, 2243–2267 (2013).

    Article 

    Google Scholar 

  • Cilliers, S. S., Müller, N. & Drewes, E. Overview on urban nature conservation: Situation in the western-grassland biome of South Africa. Urban For. Urban Green. 3, 49–62 (2004).

    Article 

    Google Scholar 

  • Becker, M. & Buchholz, S. The sand lizard moves downtown-habitat analogues for an endangered species in a metropolitan area. Urban Ecosyst. 19, 361–372 (2016).

    Article 

    Google Scholar 

  • Senate Department for Urban Development and Housing. Impervious Soil Coverage (Sealing of Soil Surface). (2016).

  • Fischer, L. K., von der Lippe, M., Rillig, M. C. & Kowarik, I. Creating novel urban grasslands by reintroducing native species in wasteland vegetation. Biol. Conserv. 159, 119–126 (2013).

    Article 

    Google Scholar 

  • von der Lippe, M., Buchholz, S., Hiller, A., Seitz, B. & Kowarik, I. CityScapeLab Berlin: A research platform for untangling urbanization effects on biodiversity. Sustainability 12, 30 (2020).

    Google Scholar 

  • LUA. Brandenburg State Environmental Office. Brandenburg State Environmental Office. Catalogue of Natural Habitats and Species of Appendices I and II of the Habitats Directive in Brandenburg: German Institute for Standardization. (2002).

  • Leuschner, C. & Ellenberg, H. Ecology of central European non-forest vegetation: Coastal to alpine, natural to man-made habitats: vegetation ecology of Central Europe. Volume II. (Springer, 2017).

  • Kotanen, P. M. Responses of vegetation to a changing regime of disturbance-effects of feral pigs in a Californian Coastal Prairie. Ecography 18, 190–199 (1995).

    Article 

    Google Scholar 

  • Dovrat, G., Perevolotsky, A. & Ne’eman, G. The response of mediterranean herbaceous community to soil disturbance by native wild boars. Plant Ecol. 215, 531–541 (2014).

    Article 

    Google Scholar 

  • Haaverstad, O., Hjeljord, O. & Wam, H. K. Wild boar rooting in a northern coniferous forest-minor silviculture impact. Scand. J. For. Res. 29, 90–95 (2014).

    Article 

    Google Scholar 

  • van der Maarel, E. & Franklin, J. (Eds. ). Vegetation Ecology. (2nd edition. Wiley, 2012).

  • Hennekens, S. M. & Schaminee, J. H. J. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12, 589–591 (2001).

    Article 

    Google Scholar 

  • Seitz, B., Ristow, M., Meißner, J., Machatzi, B. & Sukopp, H. Rote Liste und Gesamtartenliste der etablierten Farn- und Blütenpflanzen von Berlin. in Der Landesbeauftragte für Naturschutzt und Landschaftspflege, Senatsverwaltung für Umwelt, Klima und Verkehr (Hrsg): Rote Listen der gefährdeten Pflanzen, Pilze und Tiere von 118 (2018). doi:https://doi.org/10.14279/depositonce-6689.

  • Jäger, E. J. Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband (W. Rothmaler, founder). (Spektrum, 2011).

  • Landeck, I. Kartieranleitung Heuschrecken für das Naturschutzfachliche Monitoring im Naturparadies Grünhaus und im “Revier 55”. (Forschungsinstitut für Bergbaufolgelandschaften, Finsterwalde, 2007).

  • Fischer, J. et al. Die Heuschrecken Deutschlands und Nordtirols-Bestimmen-Beobachten-Schützen. (Quelle & Meyer, 2020).

  • Machatzi, B., Ratsch, A., Prasse, R. & Ristow, M. Rote Liste und Gesamtartenliste der Heuschrecken und Grillen (Saltatoria: Ensifera et Caelifera) von Berlin. (2005).

  • Doerpinghaus, A. et al. Methoden zur Erfassung von Arten der Anhänge IV und V der FFH-Richtlinie. Naturschutz Biol. Vielfalt 20, 454 (2005).

    Google Scholar 

  • Beery, S., Morris, D. & Yang, S. Efficient Pipeline for Camera Trap Image Review. ArXiv Prepr. arXiv:190706772 (2019).

  • Greco, I. et al. Guest or pest? Spatio-temporal occurrence and effects on soil and vegetation of the wild boar on Elba island. Mamm. Biol. https://doi.org/10.1007/s42991-020-00083-1 (2020).

    Article 

    Google Scholar 

  • Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).

    Google Scholar 

  • De Caceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).

    PubMed 
    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (2020).

  • Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • Zhang, D. Coefficients of Determination for Mixed-Effects Models. arXiv:200708675 (2021).

  • Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5-6. Retrieved from https://CRAN.R-project.org/package=vegan (2019).

  • Massei, G., Roy, S. & Bunting, R. Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Human-Wildlife Interact. 5, 5008 (2011).

    Google Scholar 

  • Bueno, C. G., Alados, C. L., Gomez-Garcia, D., Barrio, I. C. & Garcia-Gonzalez, R. Understanding the main factors in the extent and distribution of wild boar rooting on alpine grasslands. J. Zool. 279, 195–202 (2009).

    Article 

    Google Scholar 

  • Cuevas, M. F., Mastrantonio, L., Ojeda, R. A. & Jaksic, F. M. Effects of wild boar disturbance on vegetation and soil properties in the Monte Desert. Argentina. Mamm. Biol. 77, 299–306 (2012).

    Article 

    Google Scholar 

  • Cushman, J. H., Tierney, T. A. & Hinds, J. M. Variable effects of feral pig disturbances on native and exotic plants in a California grassland. Ecol. Appl. 14, 1746–1756 (2004).

    Article 

    Google Scholar 

  • Cuevas, M. F., Campos, C. M., Ojeda, R. A. & Jaksic, F. M. Vegetation recovery after 11 years of wild boar exclusion in the Monte Desert, Argentina. Biol. Invasions 22, 1607–1621 (2020).

    Article 

    Google Scholar 

  • Oldfield, C. A. & Evans, J. P. Twelve years of repeated wild hog activity promotes population maintenance of an invasive clonal plant in a coastal dune ecosystem. Ecol. Evol. 6, 2569–2578 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tierney, T. A. & Cushman, J. H. Temporal changes in native and exotic vegetation and soil characteristics following disturbances by feral pigs in a California grassland. Biol. Invasions 8, 1073–1089 (2006).

    Article 

    Google Scholar 

  • Buchholz, S., Seitz, B., Hiller, A., von der Lippe, M. & Kowarik, I. Impacts of dogs on urban grassland ecosystems. Landsc. Urban Plan. 215, 104201 (2021).

    Article 

    Google Scholar 

  • Heinken, T., Schmidt, M., von Oheimb, G., Kriebitzsch, W. U. & Ellenberg, H. Soil seed banks near rubbing trees indicate dispersal of plant species into forests by wild boar. Basic Appl. Ecol. 7, 31–44 (2006).

    Article 

    Google Scholar 

  • Heinken, T. Dispersal of plants by a dog in a deciduous forest. Bot. Jahrb Syst. 122, 449–467 (2000).

    Google Scholar 

  • Planchuelo, G., Kowarik, I. & von der Lippe, M. Plant traits, biotopes and urbanization dynamics explain the survival of endangered urban plant populations. J. Appl. Ecol. 57, 1581–1592 (2020).

    Article 

    Google Scholar 

  • Gardiner, T. & Hassall, M. Does microclimate affect grasshopper populations after cutting of hay in improved grassland? J. Insect Conserv. 13, 97–102 (2009).

    Article 

    Google Scholar 

  • Willott, S. J. Thermoregulation in four species of British grasshoppers (Orthoptera: Acrididae). Funct. Ecol. 11, 705–713 (1997).

    Article 

    Google Scholar 

  • Wouters, B. et al. The effects of shifting vegetation mosaics on habitat suitability for coastal dune fauna-a case study on sand lizards (Lacerta agilis). J. Coast. Conserv. 16, 89–99 (2012).

    Article 

    Google Scholar 

  • De Bruyn, GJ. Animal communities in Dutch dunes. in Van der Maarel E (ed) Dry coastal ecosystems: General aspects. (ed. Elsevier, A.) 361–386 (1997).

  • Seidling, W. Recent changes in forest vegetation in an area on the outskirts of Berlin. in H. Sukopp, S. Hejny, & I. Kowarik (Eds.), Plants and plant communities in the urban environment 223 (1990).


  • Source: Ecology - nature.com

    Scientists chart how exercise affects the body

    Connectivity modelling in conservation science: a comparative evaluation