in

Evolutionary history of grazing and resources determine herbivore exclusion effects on plant diversity

[adace-ad id="91168"]
  • White, R., Murray, S. & Rohweder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems Technical Report (World Resources Institute, 2000).

  • Thornton, P. K. Livestock production: recent trends, future prospects. Philos. Trans. R. Soc. B 365, 2853–2867 (2010).

    Article 

    Google Scholar 

  • Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Asner, G. P. et al. Physical and biogeochemical controls over terrestrial ecosystem responses to nitrogen deposition. Biogeochemistry 54, 1–39 (2001).

    CAS 
    Article 

    Google Scholar 

  • Galloway, J. N. et al. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226 (2004).

    CAS 
    Article 

    Google Scholar 

  • Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Borer, E. T., Grace, J. B., Harpole, W. S., MacDougall, A. S. & Seabloom, E. W. A decade of insights into grassland ecosystem responses to global environmental change. Nat. Ecol. Evol. 1, 0118 (2017).

    Article 

    Google Scholar 

  • Díaz, S. et al. Plant trait responses to grazing—a global synthesis. Glob. Change Biol. 13, 313–341 (2007).

    Article 

    Google Scholar 

  • Cingolani, A. M., Noy-Meir, I. & Díaz, S. Grazing effects on rangeland diversity: a synthesis of contemporary models. Ecol. Appl. 15, 757–773 (2005).

    Article 

    Google Scholar 

  • Milchunas, D. G., Sala, O. E. & Lauenroth, W. K. A generalized model of the effects of grazing by large herbivores on grassland community structure. Am. Nat. 132, 87–106 (1988).

    Article 

    Google Scholar 

  • Osem, Y., Perevolotsky, A. & Kigel, J. Site productivity and plant size explain the response of annual species to grazing exclusion in a Mediterranean semi-arid rangeland. J. Ecol. 92, 297–309 (2004).

    Article 

    Google Scholar 

  • Gao, J. & Carmel, Y. Can the intermediate disturbance hypothesis explain grazing–diversity relations at a global scale? Oikos 129, 493–502 (2020).

    Article 

    Google Scholar 

  • Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780–788 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Mack, R. N. & Thompson, J. N. Evolution in steppe with few large, hooved mammals. Am. Nat. 119, 757–773 (1982).

    Article 

    Google Scholar 

  • Axelrod, D. I. Rise of the grassland biome, central North America. Bot. Rev. 51, 163–201 (1985).

    Article 

    Google Scholar 

  • Noy-Meir, I., Gutman, M. & Kaplan, Y. Responses of Mediterranean grassland plants to grazing and protection. J. Ecol. 77, 290–310 (1989).

    Article 

    Google Scholar 

  • Olff, H. & Ritchie, M. E. Effects of herbivores on grassland plant diversity. Trends Ecol. Evol. 13, 261–265 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Proulx, M. & Mazumder, A. Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems. Ecology 79, 2581–2592 (1998).

    Article 

    Google Scholar 

  • Westoby, M., Walker, B. & Noy-Meir, I. Opportunistic management for rangelands not at equilibrium. J. Range Manag. 42, 266–274 (1989).

    Article 

    Google Scholar 

  • Prober, S. M., Standish, R. J. & Wiehl, G. After the fence: vegetation and topsoil condition in grazed, fenced and benchmark eucalypt woodlands of fragmented agricultural landscapes. Aust. J. Bot. 59, 369–381 (2011).

    Article 

    Google Scholar 

  • Seabloom, E. W., Harpole, W. S., Reichman, O. J. & Tilman, D. Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proc. Natl Acad. Sci. USA 100, 13384–13389 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Price, J. N., Schultz, N. L., Hodges, J. A., Cleland, M. A. & Morgan, J. W. Land-use legacies limit the effectiveness of switches in disturbance type to restore endangered grasslands. Restor. Ecol. 29, e13271 (2021).

    Article 

    Google Scholar 

  • Hobbs, R. J. & Huenneke, L. F. Disturbance, diversity, and invasion: implications for conservation. Conserv. Biol. 6, 324–337 (1992).

    Article 

    Google Scholar 

  • MacDougall, A. S. et al. The Neolithic plant invasion hypothesis: the role of preadaptation and disturbance in grassland invasion. New Phytol. 220, 94–103 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Mörsdorf, M. A., Ravolainen, V. T., Yoccoz, N. G., Thórhallsdóttir, T. E. & Jónsdóttir, I. S. Decades of recovery from sheep grazing reveal no effects on plant diversity patterns within Icelandic tundra landscapes. Front. Ecol. Evol. 8, 602538 (2021).

  • Mack, R. N. in Biological Invasions: A Global Perspective (eds Drake, J. A. et al.) 155–180 (John Wiley, 1989).

  • Sinkins, P. A. & Otfinowski, R. Invasion or retreat? The fate of exotic invaders on the northern prairies, 40 years after cattle grazing. Plant Ecol. 213, 1251–1262 (2012).

    Article 

    Google Scholar 

  • Stahlheber, K. A., D’Antonio, C. M. & Tyler, C. M. Livestock exclusion impacts on oak savanna habitats—differential responses of understory and open habitats. Rangel. Ecol. Manag. 70, 316–323 (2017).

    Article 

    Google Scholar 

  • Koerner, S. E. et al. Change in dominance determines herbivore effects on plant biodiversity. Nat. Ecol. Evol. 2, 1925–1932 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Gao, J. & Carmel, Y. A global meta-analysis of grazing effects on plant richness. Agric. Ecosyst. Environ. 302, 107072 (2020).

    Article 

    Google Scholar 

  • Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).

    Article 

    Google Scholar 

  • Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Milchunas, D. G. & Lauenroth, W. K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol. Monogr. 63, 327–366 (1993).

    Article 

    Google Scholar 

  • Mortensen, B. et al. Herbivores safeguard plant diversity by reducing variability in dominance. J. Ecol. 106, 101–112 (2018).

    CAS 
    Article 

    Google Scholar 

  • Chen, Q. et al. Small herbivores slow down species loss up to 22 years but only at early successional stage. J. Ecol. 107, 2688–2696 (2019).

    Article 

    Google Scholar 

  • Lunt, I. D., Eldridge, D. J., Morgan, J. W. & Witt, G. B. A framework to predict the effects of livestock grazing and grazing exclusion on conservation values in natural ecosystems in Australia. Aust. J. Bot. 55, 401–415 (2007).

    Article 

    Google Scholar 

  • Anderson, T. M. et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology 99, 822–831 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Seabloom, E. W. et al. Plant species’ origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nat. Commun. 6, 7710 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barrio, I. C. et al. The sheep in wolf’s clothing? Recognizing threats for land degradation in Iceland using state-and-transition models. Land Degrad. Dev. 29, 1714–1725 (2018).

    Article 

    Google Scholar 

  • Eldridge, D. J., Poore, A. G. B., Ruiz-Colmenero, M., Letnic, M. & Soliveres, S. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 26, 1273–1283 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Seabloom, E. W. et al. Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology 102, e03218 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Fay, P. A. et al. Grassland productivity limited by multiple nutrients. Nat. Plants 1, 15080 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yuan, Z. Y., Jiao, F., Li, Y. H. & Kallenbach, R. L. Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep. 6, 22132 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Borer, E. T. et al. Nutrients cause grassland biomass to outpace herbivory. Nat. Commun. 11, 6036 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Seabloom, E. W. et al. Species loss due to nutrient addition increases with spatial scale in global grasslands. Ecol. Lett. 24, 2100–2112 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).


  • Source: Ecology - nature.com

    Helping cassava farmers by extending crop life

    Plant phenology changes and drivers on the Qinghai–Tibetan Plateau