in

Global warming leads to larger bats with a faster life history pace in the long-lived Bechstein’s bat (Myotis bechsteinii)

  • Isaac, J. L. Effects of climate change on life history: Implications for extinction risk in mammals. Endanger. Species Res. 7, 115–123 (2009).

    Article 

    Google Scholar 

  • Tseng, M. et al. Decreases in beetle body size linked to climate change and warming temperatures. J. Anim. Ecol. 87, 647–659 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. E. Shape-shifting: changing animal morphologies as a response to climatic warming. Trends Ecol. Evol. 36, 1036–1048 (2021).

  • Davidson, S. C. et al. Ecological insights from three decades of animal movement tracking across a changing Arctic. Sci. (80-.). 370, 712–715 (2020).

    CAS 
    Article 

    Google Scholar 

  • Hällfors, M. H. et al. Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proc. Natl Acad. Sci. USA. 117, 18557–18565 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Cotton, P. A. Avian migration phenology and global climate change. Proc. Natl Acad. Sci. USA. 100, 12219–12222 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Horton, K. G. et al. Phenology of nocturnal avian migration has shifted at the continental scale. Nat. Clim. Chang. 10, 63–68 (2020).

    Article 

    Google Scholar 

  • Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: The role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180174 (2019).

  • Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ofori, B. Y., Stow, A. J., Baumgartner, J. B. & Beaumont, L. J. Influence of adaptive capacity on the outcome of climate change vulnerability assessment. Sci. Rep. 7, 1–12 (2017).

    CAS 
    Article 

    Google Scholar 

  • Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: A comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437 (1990).

    Article 

    Google Scholar 

  • Stearns, S. C. Life history evolution: Successes, limitations, and prospects. Naturwissenschaften 87, 476–486 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Roff, D. Life History,Evolution of. In Encyclopedia of Biodiversity 3, 631–641 (Oxford University Press, Incorporated, 2002).

  • Williams, J. B., Miller, R. A., Harper, J. M. & Wiersma, P. Functional linkages for the pace of life, life-history, and environment in birds. Integr. Comp. Biol. 50, 855–868 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Gaillard, J. M. et al. Generation time: A reliable metric to measure life-history variation among mammalian populations. Am. Naturalist 166, 119–123 (2005).

    Article 

    Google Scholar 

  • Healy, K., Ezard, T. H. G., Jones, O. R., Salguero-Gómez, R. & Buckley, Y. M. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat. Ecol. Evol. 3, 1217–1224 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Araya-Ajoy, Y. G. et al. Demographic measures of an individual’s “pace of life”: fecundity rate, lifespan, generation time, or a composite variable? Behav. Ecol. Sociobiol. 72, (2018).

  • Krebs, C. J., Boonstra, R., Boutin, S. & Sinclair, A. R. E. What drives the 10-year cycle of snowshoe hares? Bioscience 51, 25–35 (2001).

    Article 

    Google Scholar 

  • Sand, H. Life History Patterns in Female Moose (Alces alces): The Relationship between Age, Body Size, Fecundity and Environmental Conditions. Oecologia 106, 212–220 (1996).

  • Paniw, M. et al. The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: A global analysis. J. Anim. Ecol. 90, 1398–1407 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Forchhammer, M. C., Clutton-Brock, T. H., Lindstrom, J. & Albon, S. D. Climate and Population Density Induce Long-Term Cohort Variation in a Northern Ungulate. J. Anim. Ecol. 70, 721–729 (2001).

    Article 

    Google Scholar 

  • Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).

    Article 

    Google Scholar 

  • Dietz, C., Nill, D. & Kiefer, A. Handbuch der Fledermäuse Europa und Nordwestafrika. (Franckh Kosmos Verlag, 2016).

  • Mundinger, C., Scheuerlein, A. & Kerth, G. Long-term study shows that increasing body size in response to warmer summers is associated with a higher mortality risk in a long-lived bat species. Proc. R. Soc. B Biol. Sci. 288, 20210508 (2021).

    Article 

    Google Scholar 

  • Fleischer, T., Gampe, J., Scheuerlein, A. & Kerth, G. Rare catastrophic events drive population dynamics in a bat species with negligible senescence. Sci. Rep. 7, 1–9 (2017).

    CAS 
    Article 

    Google Scholar 

  • Working Group I. Climate Change 2021: The Physical Science Basis. Ipcc (2021).

  • Bercovitch, F. B. & Berry, P. S. M. Life expectancy, maximum longevity and lifetime reproductive success in female Thornicroft’s giraffe in Zambia. Afr. J. Ecol. 55, 443–450 (2017).

    Article 

    Google Scholar 

  • Rhine, R. J., Norton, G. W. & Wasser, S. K. Lifetime reproductive success, longevity, and reproductive life history of female yellow baboons (Papio cynocephalus) of Mikumi National Park, Tanzania. Am. J. Primatol. 51, 229–241 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ransome, R. D. Earlier breeding shortens life in female greater horseshoe bats. Philos. Trans. R. Soc. B Biol. Sci. 350, 153–161 (1995).

    Article 

    Google Scholar 

  • IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press. Cambridge, United Kingdom New York, NY, USA https://doi.org/10.1017/9781009157896 (2021).

  • Green, W. C. H. & Rothstein, A. Trade-offs between growth and reproduction in female bison. Oecologia 86, 521–527 (1991).

    PubMed 
    Article 

    Google Scholar 

  • Jorgenson, J. T., Festa-Bianchet, M., Lucherini, M. & Wishart, W. D. Effects of body size, population density, and maternal characteristics on age at first reproduction in bighorn ewes. Can. J. Zool. 71, 2509–2517 (1993).

    Article 

    Google Scholar 

  • Williams, D. F. & Findley, J. S. Sexual size dimorphism in vespertilionid bats. Am. Midl. Nat. 102, 113–126 (1979).

    Article 

    Google Scholar 

  • Myers, P. Sexual dimorphism in size of vespertilionid bats. Am. Nat. 112, 701–711 (1978).

    Article 

    Google Scholar 

  • Jonasson, K. A. & Willis, C. K. R. Changes in body condition of hibernating bats support the thrifty female hypothesis and predict consequences for populations with white-nose syndrome. PLoS One 6, e21061 (2011).

  • Kunz, T. H., Wrazen, J. A. & Burnett, C. D. Changes in body mass and fat reserves in pre-hibernating little brown bats (Myotis lucifugus). Écoscience 5, 8–17 (1998).

    Article 

    Google Scholar 

  • Pretzlaff, I., Kerth, G. & Dausmann, K. H. Communally breeding bats use physiological and behavioural adjustments to optimise daily energy expenditure. Naturwissenschaften 97, 353–363 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Kuepper, N. D., Melber, M. & Kerth, G. Nightly clustering in communal roosts and the regular presence of adult females at night provide thermal benefits for juvenile Bechstein’s bats. Mamm. Biol. 81, 201–204 (2016).

    Article 

    Google Scholar 

  • Willis, C. K. R. & Brigham, R. M. Social thermoregulation exerts more influence than microclimate on forest roost preferences by a cavity-dwelling bat. Behav. Ecol. Sociobiol. 62, 97–108 (2007).

    Article 

    Google Scholar 

  • Lemaître, J. F. et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc. R. Soc. B Biol. Sci. 282, 20150209 (2015).

  • Wilkinson, G. S. & South, J. M. Life history, ecology and longevity in bats. Aging Cell 1, 124–131 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Saino, N. et al. A trade-off between reproduction and feather growth in the barn swallow (Hirundo rustica). PLoS One 9, e96428 (2014).

  • Folkvord, A. et al. Trade-offs between growth and reproduction in wild Atlantic cod. Can. J. Fish. Aquat. Sci. 71, 1106–1112 (2014).

    Article 

    Google Scholar 

  • Culina, A., Linton, D. M., Pradel, R., Bouwhuis, S. & Macdonald, D. W. Live fast, don’t die young: Survival–reproduction trade‐offs in long‐lived income breeders. J. Anim. Ecol. 88, 746–756 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Lansing, A. I. A transmissible, cumulative, and reversible factor in aging. J. Gerontol. 2, 228–239 (1947).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Monaghan, P., Maklakov, A. A. & Metcalfe, N. B. Intergenerational Transfer of Ageing: Parental Age and Offspring Lifespan. Trends Ecol. Evol. 35, 927–937 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Sharpe, D. M. T. & Hendry, A. P. Life history change in commercially exploited fish stocks: An analysis of trends across studies. Evol. Appl. 2, 260–275 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Kuparinen, A., Boit, A., Valdovinos, F. S., Lassaux, H. & Martinez, N. D. Fishing-induced life-history changes degrade and destabilize harvested ecosystems. Sci. Rep. 6, 1–9 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kuparinen, A. & Festa-Bianchet, M. Harvest-induced evolution: Insights from aquatic and terrestrial systems. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160036 (2017).

  • Ghazy, N. A., Gotoh, T. & Suzuki, T. Impact of global warming scenarios on life-history traits of Tetranychus evansi (Acari: Tetranychidae). BMC Ecol. 19, 1–12 (2019).

    Article 

    Google Scholar 

  • Wang, H. Y., Shen, S. F., Chen, Y. S., Kiang, Y. K. & Heino, M. Life histories determine divergent population trends for fishes under climate warming. Nat. Commun. 11, 1–9 (2020).

    Article 
    CAS 

    Google Scholar 

  • Adamo, S. A. & Lovett, M. M. E. Some like it hot: The effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. J. Exp. Biol. 214, 1997–2004 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Kerth, G., Safi, K. & König, B. Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behav. Ecol. Sociobiol. 52, 203–210 (2002).

    Article 

    Google Scholar 

  • Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission-fusion dynamics of their groups. Proc. R. Soc. B Biol. Sci. 278, 2761–2767 (2011).

    Article 

    Google Scholar 

  • Fleming, T. H. The relationship between body size, diet, and habitat use in frugivorous bats, genus Carollia (Phyllostomidae). J. Mammal. 72, 493–501 (1991).

    Article 

    Google Scholar 

  • Bayerische Landesanstalt für Wald und Forstwirtschaft (LWF). Data base for meteorological data, individual values averaged.

  • DWD Climate Data Center (CDC). Historische und aktuelle 10-minütige Stationsmessungen: 1) der mittleren Windgeschwindigkeit und Windrichtung in Deutschland (Version recent, 2019); 2) des Luftdrucks, der Lufttemperatur (in 5cm und 2m Höhe), der Luftfeuchte.

  • Kerth, G., Mayer, F. & Petit, E. Extreme sex-biased dispersal in the communally breeding, nonmigratory Bechstein’s bat (Myotis bechsteinii). Mol. Ecol. 11, 1491–1498 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • van Schaik, J., Dekeukeleire, D., Gazaryan, S., Natradze, I. & Kerth, G. Comparative phylogeography of a vulnerable bat and its ectoparasite reveals dispersal of a non-mobile parasite among distinct evolutionarily significant units of the host. Conserv. Genet. 19, 481–494 (2018).

    Article 

    Google Scholar 

  • Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Wang, J. Coancestry: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Gotelli, N. J. A Primer of Ecology. (Sinauer Associates, 2008).

  • Steiner, U. K., Tuljapurkar, S. & Coulson, T. Generation time, net reproductive rate, and growth in stage-age-structured populations. Am. Nat. 183, 771–783 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Van De Pol, M. & Verhulst, S. Age ‐ Dependent Traits: A New Statistical Model to Separate Within ‐ and Between ‐ Individual Effects. Am. Nat. 167, 766–773 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Core Development Team, R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing 2, https://www.R-project.org (2021).

  • Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).

    Article 

    Google Scholar 

  • Delignette-Muller, M. L. & Dutang, C. fitdistrplus: An R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).

    Article 

    Google Scholar 

  • Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Contr. 19, 716–723 (1974).

    Article 

    Google Scholar 

  • Bonenfant, C. et al. Empirical Evidence of Density-Dependence in Populations of Large Herbivores. Adv. Ecol. Res. 41, 313–357 (2009).

    Article 

    Google Scholar 

  • Mundinger, C., Scheuerlein, A., Kerth, G. & Fleischer, T. Code and source data for the paper: Global warming leads to larger bats with a faster life history pace in the long-lived Bechstein’s bat (Myotis bechsteinii). https://doi.org/10.5281/zenodo.6543599 (2022).

  • Syntrichia caninervis adapt to mercury stress by altering submicrostructure and physiological properties in the Gurbantünggüt Desert

    Diminished carbon and nitrate assimilation drive changes in diatom elemental stoichiometry independent of silicification in an iron-limited assemblage