Isaac, J. L. Effects of climate change on life history: Implications for extinction risk in mammals. Endanger. Species Res. 7, 115–123 (2009).
Google Scholar
Tseng, M. et al. Decreases in beetle body size linked to climate change and warming temperatures. J. Anim. Ecol. 87, 647–659 (2018).
Google Scholar
Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).
Google Scholar
Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. E. Shape-shifting: changing animal morphologies as a response to climatic warming. Trends Ecol. Evol. 36, 1036–1048 (2021).
Davidson, S. C. et al. Ecological insights from three decades of animal movement tracking across a changing Arctic. Sci. (80-.). 370, 712–715 (2020).
Google Scholar
Hällfors, M. H. et al. Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proc. Natl Acad. Sci. USA. 117, 18557–18565 (2020).
Google Scholar
Cotton, P. A. Avian migration phenology and global climate change. Proc. Natl Acad. Sci. USA. 100, 12219–12222 (2003).
Google Scholar
Horton, K. G. et al. Phenology of nocturnal avian migration has shifted at the continental scale. Nat. Clim. Chang. 10, 63–68 (2020).
Google Scholar
Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: The role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180174 (2019).
Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).
Google Scholar
Ofori, B. Y., Stow, A. J., Baumgartner, J. B. & Beaumont, L. J. Influence of adaptive capacity on the outcome of climate change vulnerability assessment. Sci. Rep. 7, 1–12 (2017).
Google Scholar
Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: A comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437 (1990).
Google Scholar
Stearns, S. C. Life history evolution: Successes, limitations, and prospects. Naturwissenschaften 87, 476–486 (2000).
Google Scholar
Roff, D. Life History,Evolution of. In Encyclopedia of Biodiversity 3, 631–641 (Oxford University Press, Incorporated, 2002).
Williams, J. B., Miller, R. A., Harper, J. M. & Wiersma, P. Functional linkages for the pace of life, life-history, and environment in birds. Integr. Comp. Biol. 50, 855–868 (2010).
Google Scholar
Gaillard, J. M. et al. Generation time: A reliable metric to measure life-history variation among mammalian populations. Am. Naturalist 166, 119–123 (2005).
Google Scholar
Healy, K., Ezard, T. H. G., Jones, O. R., Salguero-Gómez, R. & Buckley, Y. M. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat. Ecol. Evol. 3, 1217–1224 (2019).
Google Scholar
Araya-Ajoy, Y. G. et al. Demographic measures of an individual’s “pace of life”: fecundity rate, lifespan, generation time, or a composite variable? Behav. Ecol. Sociobiol. 72, (2018).
Krebs, C. J., Boonstra, R., Boutin, S. & Sinclair, A. R. E. What drives the 10-year cycle of snowshoe hares? Bioscience 51, 25–35 (2001).
Google Scholar
Sand, H. Life History Patterns in Female Moose (Alces alces): The Relationship between Age, Body Size, Fecundity and Environmental Conditions. Oecologia 106, 212–220 (1996).
Paniw, M. et al. The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: A global analysis. J. Anim. Ecol. 90, 1398–1407 (2021).
Google Scholar
Forchhammer, M. C., Clutton-Brock, T. H., Lindstrom, J. & Albon, S. D. Climate and Population Density Induce Long-Term Cohort Variation in a Northern Ungulate. J. Anim. Ecol. 70, 721–729 (2001).
Google Scholar
Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).
Google Scholar
Dietz, C., Nill, D. & Kiefer, A. Handbuch der Fledermäuse Europa und Nordwestafrika. (Franckh Kosmos Verlag, 2016).
Mundinger, C., Scheuerlein, A. & Kerth, G. Long-term study shows that increasing body size in response to warmer summers is associated with a higher mortality risk in a long-lived bat species. Proc. R. Soc. B Biol. Sci. 288, 20210508 (2021).
Google Scholar
Fleischer, T., Gampe, J., Scheuerlein, A. & Kerth, G. Rare catastrophic events drive population dynamics in a bat species with negligible senescence. Sci. Rep. 7, 1–9 (2017).
Google Scholar
Working Group I. Climate Change 2021: The Physical Science Basis. Ipcc (2021).
Bercovitch, F. B. & Berry, P. S. M. Life expectancy, maximum longevity and lifetime reproductive success in female Thornicroft’s giraffe in Zambia. Afr. J. Ecol. 55, 443–450 (2017).
Google Scholar
Rhine, R. J., Norton, G. W. & Wasser, S. K. Lifetime reproductive success, longevity, and reproductive life history of female yellow baboons (Papio cynocephalus) of Mikumi National Park, Tanzania. Am. J. Primatol. 51, 229–241 (2000).
Google Scholar
Ransome, R. D. Earlier breeding shortens life in female greater horseshoe bats. Philos. Trans. R. Soc. B Biol. Sci. 350, 153–161 (1995).
Google Scholar
IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press. Cambridge, United Kingdom New York, NY, USA https://doi.org/10.1017/9781009157896 (2021).
Green, W. C. H. & Rothstein, A. Trade-offs between growth and reproduction in female bison. Oecologia 86, 521–527 (1991).
Google Scholar
Jorgenson, J. T., Festa-Bianchet, M., Lucherini, M. & Wishart, W. D. Effects of body size, population density, and maternal characteristics on age at first reproduction in bighorn ewes. Can. J. Zool. 71, 2509–2517 (1993).
Google Scholar
Williams, D. F. & Findley, J. S. Sexual size dimorphism in vespertilionid bats. Am. Midl. Nat. 102, 113–126 (1979).
Google Scholar
Myers, P. Sexual dimorphism in size of vespertilionid bats. Am. Nat. 112, 701–711 (1978).
Google Scholar
Jonasson, K. A. & Willis, C. K. R. Changes in body condition of hibernating bats support the thrifty female hypothesis and predict consequences for populations with white-nose syndrome. PLoS One 6, e21061 (2011).
Kunz, T. H., Wrazen, J. A. & Burnett, C. D. Changes in body mass and fat reserves in pre-hibernating little brown bats (Myotis lucifugus). Écoscience 5, 8–17 (1998).
Google Scholar
Pretzlaff, I., Kerth, G. & Dausmann, K. H. Communally breeding bats use physiological and behavioural adjustments to optimise daily energy expenditure. Naturwissenschaften 97, 353–363 (2010).
Google Scholar
Kuepper, N. D., Melber, M. & Kerth, G. Nightly clustering in communal roosts and the regular presence of adult females at night provide thermal benefits for juvenile Bechstein’s bats. Mamm. Biol. 81, 201–204 (2016).
Google Scholar
Willis, C. K. R. & Brigham, R. M. Social thermoregulation exerts more influence than microclimate on forest roost preferences by a cavity-dwelling bat. Behav. Ecol. Sociobiol. 62, 97–108 (2007).
Google Scholar
Lemaître, J. F. et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc. R. Soc. B Biol. Sci. 282, 20150209 (2015).
Wilkinson, G. S. & South, J. M. Life history, ecology and longevity in bats. Aging Cell 1, 124–131 (2002).
Google Scholar
Saino, N. et al. A trade-off between reproduction and feather growth in the barn swallow (Hirundo rustica). PLoS One 9, e96428 (2014).
Folkvord, A. et al. Trade-offs between growth and reproduction in wild Atlantic cod. Can. J. Fish. Aquat. Sci. 71, 1106–1112 (2014).
Google Scholar
Culina, A., Linton, D. M., Pradel, R., Bouwhuis, S. & Macdonald, D. W. Live fast, don’t die young: Survival–reproduction trade‐offs in long‐lived income breeders. J. Anim. Ecol. 88, 746–756 (2019).
Google Scholar
Lansing, A. I. A transmissible, cumulative, and reversible factor in aging. J. Gerontol. 2, 228–239 (1947).
Google Scholar
Monaghan, P., Maklakov, A. A. & Metcalfe, N. B. Intergenerational Transfer of Ageing: Parental Age and Offspring Lifespan. Trends Ecol. Evol. 35, 927–937 (2020).
Google Scholar
Sharpe, D. M. T. & Hendry, A. P. Life history change in commercially exploited fish stocks: An analysis of trends across studies. Evol. Appl. 2, 260–275 (2009).
Google Scholar
Kuparinen, A., Boit, A., Valdovinos, F. S., Lassaux, H. & Martinez, N. D. Fishing-induced life-history changes degrade and destabilize harvested ecosystems. Sci. Rep. 6, 1–9 (2016).
Google Scholar
Kuparinen, A. & Festa-Bianchet, M. Harvest-induced evolution: Insights from aquatic and terrestrial systems. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160036 (2017).
Ghazy, N. A., Gotoh, T. & Suzuki, T. Impact of global warming scenarios on life-history traits of Tetranychus evansi (Acari: Tetranychidae). BMC Ecol. 19, 1–12 (2019).
Google Scholar
Wang, H. Y., Shen, S. F., Chen, Y. S., Kiang, Y. K. & Heino, M. Life histories determine divergent population trends for fishes under climate warming. Nat. Commun. 11, 1–9 (2020).
Google Scholar
Adamo, S. A. & Lovett, M. M. E. Some like it hot: The effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. J. Exp. Biol. 214, 1997–2004 (2011).
Google Scholar
Kerth, G., Safi, K. & König, B. Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behav. Ecol. Sociobiol. 52, 203–210 (2002).
Google Scholar
Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission-fusion dynamics of their groups. Proc. R. Soc. B Biol. Sci. 278, 2761–2767 (2011).
Google Scholar
Fleming, T. H. The relationship between body size, diet, and habitat use in frugivorous bats, genus Carollia (Phyllostomidae). J. Mammal. 72, 493–501 (1991).
Google Scholar
Bayerische Landesanstalt für Wald und Forstwirtschaft (LWF). Data base for meteorological data, individual values averaged.
DWD Climate Data Center (CDC). Historische und aktuelle 10-minütige Stationsmessungen: 1) der mittleren Windgeschwindigkeit und Windrichtung in Deutschland (Version recent, 2019); 2) des Luftdrucks, der Lufttemperatur (in 5cm und 2m Höhe), der Luftfeuchte.
Kerth, G., Mayer, F. & Petit, E. Extreme sex-biased dispersal in the communally breeding, nonmigratory Bechstein’s bat (Myotis bechsteinii). Mol. Ecol. 11, 1491–1498 (2002).
Google Scholar
van Schaik, J., Dekeukeleire, D., Gazaryan, S., Natradze, I. & Kerth, G. Comparative phylogeography of a vulnerable bat and its ectoparasite reveals dispersal of a non-mobile parasite among distinct evolutionarily significant units of the host. Conserv. Genet. 19, 481–494 (2018).
Google Scholar
Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).
Google Scholar
Wang, J. Coancestry: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145 (2011).
Google Scholar
Gotelli, N. J. A Primer of Ecology. (Sinauer Associates, 2008).
Steiner, U. K., Tuljapurkar, S. & Coulson, T. Generation time, net reproductive rate, and growth in stage-age-structured populations. Am. Nat. 183, 771–783 (2014).
Google Scholar
Van De Pol, M. & Verhulst, S. Age ‐ Dependent Traits: A New Statistical Model to Separate Within ‐ and Between ‐ Individual Effects. Am. Nat. 167, 766–773 (2006).
Google Scholar
Core Development Team, R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing 2, https://www.R-project.org (2021).
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).
Google Scholar
Delignette-Muller, M. L. & Dutang, C. fitdistrplus: An R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).
Google Scholar
Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Contr. 19, 716–723 (1974).
Google Scholar
Bonenfant, C. et al. Empirical Evidence of Density-Dependence in Populations of Large Herbivores. Adv. Ecol. Res. 41, 313–357 (2009).
Google Scholar
Mundinger, C., Scheuerlein, A., Kerth, G. & Fleischer, T. Code and source data for the paper: Global warming leads to larger bats with a faster life history pace in the long-lived Bechstein’s bat (Myotis bechsteinii). https://doi.org/10.5281/zenodo.6543599 (2022).
Source: Ecology - nature.com