in

High-resolution global maps of tidal flat ecosystems from 1984 to 2019

  • Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225, https://doi.org/10.1038/s41586-018-0805-8 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bishop, M. J., Murray, N. J., Swearer, S. & Keith, D. A. In The IUCN Global Ecosystem Typology 2.0: Descriptive profiles for biomes and ecosystem functional groups (eds D. A. Keith, J. R. Ferrer-Paris, E. Nicholson, & R. T. Kingsford) (IUCN, 2020).

  • Keith, D. A. et al. Earth’s ecosystems: a function-based typology for conservation and sustainability. Nature (In review).

  • Murray, N. J., Phinn, S. R., Clemens, R. S., Roelfsema, C. M. & Fuller, R. A. Continental scale mapping of tidal flats across East Asia using the Landsat Archive. Remote Sensing 4, 3417–3426, https://doi.org/10.3390/Rs4113417 (2012).

    Article 

    Google Scholar 

  • Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P. & Fuller, R. A. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Fron. Ecol. Environ. 12, 267–272, https://doi.org/10.1890/130260 (2014).

    Article 

    Google Scholar 

  • Murray, N. J., Ma, Z. & Fuller, R. A. Tidal flats of the Yellow Sea: A review of ecosystem status and anthropogenic threats. Austral Ecol. 40, 472–481, https://doi.org/10.1111/aec.12211 (2015).

    Article 

    Google Scholar 

  • Dhanjal-Adams, K. et al. Distribution and protection of intertidal habitats in Australia. Emu 116, 208–214 (2015).

    Article 

    Google Scholar 

  • Murray, N. J. et al. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science 376, 744–749, https://doi.org/10.1126/science.abm9583 (2022).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gong, P. et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 34, 2607–2654 (2013).

    Article 

    Google Scholar 

  • Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031 (2017).

    Article 

    Google Scholar 

  • Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 182, 173–176 (2015).

    Article 

    Google Scholar 

  • Murray, N. J. et al. The role of satellite remote sensing in structured ecosystem risk assessments. Sci Total Environ 619–620, 249–257, https://doi.org/10.1016/j.scitotenv.2017.11.034 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ying, Q. et al. Global bare ground gain from 2000 to 2012 using Landsat imagery. Remote Sens. Environ. 194, 161–176, https://doi.org/10.1016/j.rse.2017.03.022 (2017).

    Article 

    Google Scholar 

  • Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643, https://doi.org/10.1038/s41586-018-0411-9 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noble, S. et al. A new 30 meter resolution global shoreline vector and associated global islands database for the development of standardized ecological coastal units AU – Sayre, Roger. Journal of Operational Oceanography, 1–10, https://doi.org/10.1080/1755876X.2018.1529714 (2018).

  • Sayre, R. et al. A global ecological classification of coastal segment units to complement marine biodiversity observation network assessments. Oceanography 34, 120–129 (2021).

    Article 

    Google Scholar 

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853, https://doi.org/10.1126/science.1244693 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Primary forest cover loss in Indonesia over 2000–2012. Nature Climate Change 4, 730–735, https://doi.org/10.1038/nclimate2277 (2014).

    Article 

    Google Scholar 

  • Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111, https://doi.org/10.1126/science.aau3445 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422, https://doi.org/10.1038/nature20584 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792, https://doi.org/10.1016/j.rse.2020.111792 (2020).

    Article 

    Google Scholar 

  • Yamazaki, D., Trigg, M. A. & Ikeshima, D. Development of a global ~ 90 m water body map using multi-temporal Landsat images. Remote Sens. Environ. 171, 337–351, https://doi.org/10.1016/j.rse.2015.10.014 (2015).

    Article 

    Google Scholar 

  • Fluet-Chouinard, E., Lehner, B., Rebelo, L.-M., Papa, F. & Hamilton, S. K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 158, 348–361, https://doi.org/10.1016/j.rse.2014.10.015 (2015).

    Article 

    Google Scholar 

  • Bunting, P. et al. The Global Mangrove Watch—A new 2010 global baseline of mangrove extent. Remote Sensing 10, 1669 (2018).

    Article 

    Google Scholar 

  • Worthington, T. A. et al. Harnessing Big Data to Support the Conservation and Rehabilitation of Mangrove Forests Globally. One Earth 2, 429–443, https://doi.org/10.1016/j.oneear.2020.04.018 (2020).

    Article 

    Google Scholar 

  • Worthington, T. A. et al. A global typology of mangroves and its relevance for ecosystem services and deforestation. Scientific reports (2020).

  • Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLOS ONE 12, e0179302, https://doi.org/10.1371/journal.pone.0179302 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience 12, 40–45, https://doi.org/10.1038/s41561-018-0279-1 (2019).

    CAS 
    Article 

    Google Scholar 

  • Allen, G. H. & Pavelsky, T. M. Global extent of rivers and streams. Science 361, 585–588, https://doi.org/10.1126/science.aat0636 (2018).

    MathSciNet 
    CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Lyons, M. et al. Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sensing in Ecology and Conservation (2020).

  • Li, J. et al. A global coral reef probability map generated using convolutional neural networks. Coral Reefs https://doi.org/10.1007/s00338-020-02005-6 (2020).

    Article 

    Google Scholar 

  • Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 69–73, https://doi.org/10.1038/s41586-019-1848-1 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291, https://doi.org/10.1126/science.aaf2201 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244, https://doi.org/10.1126/science.1257484 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lee, C. K. F., Nicholson, E., Duncan, C. & Murray, N. J. Estimating changes and trends in ecosystem extent with dense time-series satellite remote sensing. Conserv Biol 35, 325–335, https://doi.org/10.1111/cobi.13520 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Deegan, L. A. et al. Coastal eutrophication as a driver of salt marsh loss. Nature 490, 388–392 (2012).

    CAS 
    Article 

    Google Scholar 

  • Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob Chang Biol 26, 5844–5855, https://doi.org/10.1111/gcb.15275 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, A. C. & McLachlan, A. Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Environ. Conserv. 29, 62–77, https://doi.org/10.1017/s037689290200005x (2002).

    Article 

    Google Scholar 

  • Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. USA 113, 13785–13790, https://doi.org/10.1073/pnas.1606102113 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill, N. K., Woodworth, B. K., Phinn, S. R., Murray, N. J. & Fuller, R. A. Global protected-area coverage and human pressure on tidal flats. Conserv Biol, https://doi.org/10.1111/cobi.13638 (2021).

  • Murray, N. J. et al. Myanmar’s terrestrial ecosystems: Status, threats and conservation opportunities. Biol. Conserv. 252, 108834, https://doi.org/10.1016/j.biocon.2020.108834 (2020).

    Article 

    Google Scholar 

  • Jackson, M. V. et al. Dual threat of tidal flat loss and invasive Spartina alterniflora endanger important shorebird habitat in coastal mainland China. J Environ Manage 278, 111549, https://doi.org/10.1016/j.jenvman.2020.111549 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Davidson, N. C. & Finlayson, C. M. Updating global coastal wetland areas presented in Davidson and Finlayson (2018). Marine and Freshwater Research 70, 1195–1200, https://doi.org/10.1071/MF19010 (2019).

    Article 

    Google Scholar 

  • Duan, H. et al. Identifying new sites of significance to waterbirds conservation and their habitat modification in the Yellow and Bohai Seas in China. Global Ecology and Conservation, e01031 (2020).

  • Jung, M. et al. A global map of terrestrial habitat types. Scientific Data 7, 256, https://doi.org/10.1038/s41597-020-00599-8 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keith, D. et al. The IUCN Global Ecosystem Typology v2.0: Descriptive profiles for Biomes and Ecosystem Functional Groups. (The International Union for the Conservation of Nature (IUCN), Gland, 2020).

  • Fink, D. et al. Modeling avian full annual cycle distribution and population trends with citizen science data. Ecol. Appl. 30, e02056, https://doi.org/10.1002/eap.2056 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Convention on Biological Diversity. Indicators for the post-2020 Global Biodiversity Framework. (Convention on Biological Diversity, 2021).

  • Murray, NJ. et al. High-resolution global maps of tidal flat ecosystems from 1984 to 2019, Figshare, https://doi.org/10.6084/m9.figshare.c.5884598.v1 (2022).

  • Amante, C. & Eakins, B. W. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. (US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division, 2009).

  • Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, Rg200410.1029/2005rg000183 (2007).

    Article 

    Google Scholar 

  • Mcowen, C. et al. A global map of saltmarshes. Biodiversity Data Journal 5, https://doi.org/10.3897/BDJ.5.e11764 (2017).

  • Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20, 154–159, https://doi.org/10.1111/j.1466-8238.2010.00584.x (2011).

    Article 

    Google Scholar 

  • US Geological Survey. Product Guide: Landsat 4–7 Surface Reflectance (LEDAPS) Product (2018).

  • US Geological Survey. Product Guide: Landsat 8 Surface Reflectance Code (LASRC) Product (2018).

  • Foga, S. et al. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 194, 379–390 (2017).

    Article 

    Google Scholar 

  • Breiman, L. Random forests. Machine learning 45, 5–32 (2001).

    Article 

    Google Scholar 

  • Murray, N. J. et al. Code and data supplement to “High-resolution global maps of tidal flat ecosystems from 1984 to 2019”. Zenodo https://doi.org/10.5281/zenodo.6332960 (2020).

  • Congalton, R. G. & Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. (CRC press, 2008).

  • Lyons, M. B., Keith, D. A., Phinn, S. R., Mason, T. J. & Elith, J. A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sens. Environ. 208, 145–153, https://doi.org/10.1016/j.rse.2018.02.026 (2018).

    Article 

    Google Scholar 

  • Sagar, S., Roberts, D., Bala, B. & Lymburner, L. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations. Remote Sens. Environ. 195, 153–169, https://doi.org/10.1016/j.rse.2017.04.009 (2017).

    Article 

    Google Scholar 

  • Lee, J. et al. The first national scale evaluation of organic carbon stocks and sequestration rates of coastal sediments along the West Sea, South Sea, and East Sea of South Korea. Sci Total Environ 793, 148568, https://doi.org/10.1016/j.scitotenv.2021.148568 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhang, Z., Xu, N., Li, Y. & Li, Y. Sub-continental-scale mapping of tidal wetland composition for East Asia: A novel algorithm integrating satellite tide-level and phenological features. Remote Sens. Environ. 269, 112799, https://doi.org/10.1016/j.rse.2021.112799 (2022).

    Article 

    Google Scholar 

  • Hooijer, A. & Vernimmen, R. Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics. Nat. Commun. 12, 1–7 (2021).

    Article 

    Google Scholar 

  • Rodríguez, J. P. et al. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos. Trans. R. Soc. B-Biol. Sci. 370, 20140003, https://doi.org/10.1098/rstb.2014.0003 (2015).

    Article 

    Google Scholar 

  • Keith, D. A. et al. The IUCN Red List of Ecosystems: Motivations, Challenges, and Applications. Conservation Letters 8, 214–226, https://doi.org/10.1111/conl.12167 (2015).

    Article 

    Google Scholar 

  • Spencer, T. et al. Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model. Global and Planetary Change 139, 15–30 (2016).

    Article 

    Google Scholar 

  • Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M. & Thomas, N. Global Mangrove Watch: Updated 2010 Mangrove Forest Extent (v2.5). Remote Sensing 14, 1034 (2022).

    Article 

    Google Scholar 

  • US Geological Survey. Landsat 4–7 Collection 1 (C1) Surface Reflectance (LEDAPS) Product Guide. Version 3.0. (USGS, 2020).

  • Xu, C. & Liu, W. Mapping and analyzing the annual dynamics of tidal flats in the conterminous United States from 1984 to 2020 using Google Earth Engine. Environmental Advances 7, 100147, https://doi.org/10.1016/j.envadv.2021.100147 (2022).

    Article 

    Google Scholar 

  • Wang, X. X. et al. Rebound in China’s coastal wetlands following conservation and restoration. Nature Sustainability 4, 1076-+, https://doi.org/10.1038/s41893-021-00793-5 (2021).

    Article 

    Google Scholar 

  • Fitton, J. M., Rennie, A. F., Hansom, J. D. & Muir, F. M. E. Remotely sensed mapping of the intertidal zone: a Sentinel-2 and Google Earth Engine methodology. Remote Sensing Applications: Society and Environment, 100499, https://doi.org/10.1016/j.rsase.2021.100499 (2021).

  • Murray, N. J., Kennedy, E., Álvarez-Romero, J. G. & Lyons, M. B. Data freshness in ecology and conservation. Trends in Ecology and Evolution 36, 485–487, https://doi.org/10.1016/j.tree.2021.03.005 (2021).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Increased drought effects on the phenology of autumn leaf senescence

    MIT students contribute to success of historic fusion experiment