Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225, https://doi.org/10.1038/s41586-018-0805-8 (2019).
Google Scholar
Bishop, M. J., Murray, N. J., Swearer, S. & Keith, D. A. In The IUCN Global Ecosystem Typology 2.0: Descriptive profiles for biomes and ecosystem functional groups (eds D. A. Keith, J. R. Ferrer-Paris, E. Nicholson, & R. T. Kingsford) (IUCN, 2020).
Keith, D. A. et al. Earth’s ecosystems: a function-based typology for conservation and sustainability. Nature (In review).
Murray, N. J., Phinn, S. R., Clemens, R. S., Roelfsema, C. M. & Fuller, R. A. Continental scale mapping of tidal flats across East Asia using the Landsat Archive. Remote Sensing 4, 3417–3426, https://doi.org/10.3390/Rs4113417 (2012).
Google Scholar
Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P. & Fuller, R. A. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Fron. Ecol. Environ. 12, 267–272, https://doi.org/10.1890/130260 (2014).
Google Scholar
Murray, N. J., Ma, Z. & Fuller, R. A. Tidal flats of the Yellow Sea: A review of ecosystem status and anthropogenic threats. Austral Ecol. 40, 472–481, https://doi.org/10.1111/aec.12211 (2015).
Google Scholar
Dhanjal-Adams, K. et al. Distribution and protection of intertidal habitats in Australia. Emu 116, 208–214 (2015).
Google Scholar
Murray, N. J. et al. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science 376, 744–749, https://doi.org/10.1126/science.abm9583 (2022).
Google Scholar
Gong, P. et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 34, 2607–2654 (2013).
Google Scholar
Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031 (2017).
Google Scholar
Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 182, 173–176 (2015).
Google Scholar
Murray, N. J. et al. The role of satellite remote sensing in structured ecosystem risk assessments. Sci Total Environ 619–620, 249–257, https://doi.org/10.1016/j.scitotenv.2017.11.034 (2018).
Google Scholar
Ying, Q. et al. Global bare ground gain from 2000 to 2012 using Landsat imagery. Remote Sens. Environ. 194, 161–176, https://doi.org/10.1016/j.rse.2017.03.022 (2017).
Google Scholar
Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643, https://doi.org/10.1038/s41586-018-0411-9 (2018).
Google Scholar
Noble, S. et al. A new 30 meter resolution global shoreline vector and associated global islands database for the development of standardized ecological coastal units AU – Sayre, Roger. Journal of Operational Oceanography, 1–10, https://doi.org/10.1080/1755876X.2018.1529714 (2018).
Sayre, R. et al. A global ecological classification of coastal segment units to complement marine biodiversity observation network assessments. Oceanography 34, 120–129 (2021).
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853, https://doi.org/10.1126/science.1244693 (2013).
Google Scholar
Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Primary forest cover loss in Indonesia over 2000–2012. Nature Climate Change 4, 730–735, https://doi.org/10.1038/nclimate2277 (2014).
Google Scholar
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111, https://doi.org/10.1126/science.aau3445 (2018).
Google Scholar
Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422, https://doi.org/10.1038/nature20584 (2016).
Google Scholar
Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792, https://doi.org/10.1016/j.rse.2020.111792 (2020).
Google Scholar
Yamazaki, D., Trigg, M. A. & Ikeshima, D. Development of a global ~ 90 m water body map using multi-temporal Landsat images. Remote Sens. Environ. 171, 337–351, https://doi.org/10.1016/j.rse.2015.10.014 (2015).
Google Scholar
Fluet-Chouinard, E., Lehner, B., Rebelo, L.-M., Papa, F. & Hamilton, S. K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 158, 348–361, https://doi.org/10.1016/j.rse.2014.10.015 (2015).
Google Scholar
Bunting, P. et al. The Global Mangrove Watch—A new 2010 global baseline of mangrove extent. Remote Sensing 10, 1669 (2018).
Google Scholar
Worthington, T. A. et al. Harnessing Big Data to Support the Conservation and Rehabilitation of Mangrove Forests Globally. One Earth 2, 429–443, https://doi.org/10.1016/j.oneear.2020.04.018 (2020).
Google Scholar
Worthington, T. A. et al. A global typology of mangroves and its relevance for ecosystem services and deforestation. Scientific reports (2020).
Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLOS ONE 12, e0179302, https://doi.org/10.1371/journal.pone.0179302 (2017).
Google Scholar
Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience 12, 40–45, https://doi.org/10.1038/s41561-018-0279-1 (2019).
Google Scholar
Allen, G. H. & Pavelsky, T. M. Global extent of rivers and streams. Science 361, 585–588, https://doi.org/10.1126/science.aat0636 (2018).
Google Scholar
Lyons, M. et al. Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sensing in Ecology and Conservation (2020).
Li, J. et al. A global coral reef probability map generated using convolutional neural networks. Coral Reefs https://doi.org/10.1007/s00338-020-02005-6 (2020).
Google Scholar
Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 69–73, https://doi.org/10.1038/s41586-019-1848-1 (2020).
Google Scholar
Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291, https://doi.org/10.1126/science.aaf2201 (2016).
Google Scholar
Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244, https://doi.org/10.1126/science.1257484 (2014).
Google Scholar
Lee, C. K. F., Nicholson, E., Duncan, C. & Murray, N. J. Estimating changes and trends in ecosystem extent with dense time-series satellite remote sensing. Conserv Biol 35, 325–335, https://doi.org/10.1111/cobi.13520 (2021).
Google Scholar
Deegan, L. A. et al. Coastal eutrophication as a driver of salt marsh loss. Nature 490, 388–392 (2012).
Google Scholar
Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob Chang Biol 26, 5844–5855, https://doi.org/10.1111/gcb.15275 (2020).
Google Scholar
Brown, A. C. & McLachlan, A. Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Environ. Conserv. 29, 62–77, https://doi.org/10.1017/s037689290200005x (2002).
Google Scholar
Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. USA 113, 13785–13790, https://doi.org/10.1073/pnas.1606102113 (2016).
Google Scholar
Hill, N. K., Woodworth, B. K., Phinn, S. R., Murray, N. J. & Fuller, R. A. Global protected-area coverage and human pressure on tidal flats. Conserv Biol, https://doi.org/10.1111/cobi.13638 (2021).
Murray, N. J. et al. Myanmar’s terrestrial ecosystems: Status, threats and conservation opportunities. Biol. Conserv. 252, 108834, https://doi.org/10.1016/j.biocon.2020.108834 (2020).
Google Scholar
Jackson, M. V. et al. Dual threat of tidal flat loss and invasive Spartina alterniflora endanger important shorebird habitat in coastal mainland China. J Environ Manage 278, 111549, https://doi.org/10.1016/j.jenvman.2020.111549 (2021).
Google Scholar
Davidson, N. C. & Finlayson, C. M. Updating global coastal wetland areas presented in Davidson and Finlayson (2018). Marine and Freshwater Research 70, 1195–1200, https://doi.org/10.1071/MF19010 (2019).
Google Scholar
Duan, H. et al. Identifying new sites of significance to waterbirds conservation and their habitat modification in the Yellow and Bohai Seas in China. Global Ecology and Conservation, e01031 (2020).
Jung, M. et al. A global map of terrestrial habitat types. Scientific Data 7, 256, https://doi.org/10.1038/s41597-020-00599-8 (2020).
Google Scholar
Keith, D. et al. The IUCN Global Ecosystem Typology v2.0: Descriptive profiles for Biomes and Ecosystem Functional Groups. (The International Union for the Conservation of Nature (IUCN), Gland, 2020).
Fink, D. et al. Modeling avian full annual cycle distribution and population trends with citizen science data. Ecol. Appl. 30, e02056, https://doi.org/10.1002/eap.2056 (2020).
Google Scholar
Convention on Biological Diversity. Indicators for the post-2020 Global Biodiversity Framework. (Convention on Biological Diversity, 2021).
Murray, NJ. et al. High-resolution global maps of tidal flat ecosystems from 1984 to 2019, Figshare, https://doi.org/10.6084/m9.figshare.c.5884598.v1 (2022).
Amante, C. & Eakins, B. W. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. (US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division, 2009).
Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, Rg200410.1029/2005rg000183 (2007).
Google Scholar
Mcowen, C. et al. A global map of saltmarshes. Biodiversity Data Journal 5, https://doi.org/10.3897/BDJ.5.e11764 (2017).
Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20, 154–159, https://doi.org/10.1111/j.1466-8238.2010.00584.x (2011).
Google Scholar
US Geological Survey. Product Guide: Landsat 4–7 Surface Reflectance (LEDAPS) Product (2018).
US Geological Survey. Product Guide: Landsat 8 Surface Reflectance Code (LASRC) Product (2018).
Foga, S. et al. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 194, 379–390 (2017).
Google Scholar
Breiman, L. Random forests. Machine learning 45, 5–32 (2001).
Google Scholar
Murray, N. J. et al. Code and data supplement to “High-resolution global maps of tidal flat ecosystems from 1984 to 2019”. Zenodo https://doi.org/10.5281/zenodo.6332960 (2020).
Congalton, R. G. & Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. (CRC press, 2008).
Lyons, M. B., Keith, D. A., Phinn, S. R., Mason, T. J. & Elith, J. A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sens. Environ. 208, 145–153, https://doi.org/10.1016/j.rse.2018.02.026 (2018).
Google Scholar
Sagar, S., Roberts, D., Bala, B. & Lymburner, L. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations. Remote Sens. Environ. 195, 153–169, https://doi.org/10.1016/j.rse.2017.04.009 (2017).
Google Scholar
Lee, J. et al. The first national scale evaluation of organic carbon stocks and sequestration rates of coastal sediments along the West Sea, South Sea, and East Sea of South Korea. Sci Total Environ 793, 148568, https://doi.org/10.1016/j.scitotenv.2021.148568 (2021).
Google Scholar
Zhang, Z., Xu, N., Li, Y. & Li, Y. Sub-continental-scale mapping of tidal wetland composition for East Asia: A novel algorithm integrating satellite tide-level and phenological features. Remote Sens. Environ. 269, 112799, https://doi.org/10.1016/j.rse.2021.112799 (2022).
Google Scholar
Hooijer, A. & Vernimmen, R. Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics. Nat. Commun. 12, 1–7 (2021).
Google Scholar
Rodríguez, J. P. et al. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos. Trans. R. Soc. B-Biol. Sci. 370, 20140003, https://doi.org/10.1098/rstb.2014.0003 (2015).
Google Scholar
Keith, D. A. et al. The IUCN Red List of Ecosystems: Motivations, Challenges, and Applications. Conservation Letters 8, 214–226, https://doi.org/10.1111/conl.12167 (2015).
Google Scholar
Spencer, T. et al. Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model. Global and Planetary Change 139, 15–30 (2016).
Google Scholar
Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M. & Thomas, N. Global Mangrove Watch: Updated 2010 Mangrove Forest Extent (v2.5). Remote Sensing 14, 1034 (2022).
Google Scholar
US Geological Survey. Landsat 4–7 Collection 1 (C1) Surface Reflectance (LEDAPS) Product Guide. Version 3.0. (USGS, 2020).
Xu, C. & Liu, W. Mapping and analyzing the annual dynamics of tidal flats in the conterminous United States from 1984 to 2020 using Google Earth Engine. Environmental Advances 7, 100147, https://doi.org/10.1016/j.envadv.2021.100147 (2022).
Google Scholar
Wang, X. X. et al. Rebound in China’s coastal wetlands following conservation and restoration. Nature Sustainability 4, 1076-+, https://doi.org/10.1038/s41893-021-00793-5 (2021).
Google Scholar
Fitton, J. M., Rennie, A. F., Hansom, J. D. & Muir, F. M. E. Remotely sensed mapping of the intertidal zone: a Sentinel-2 and Google Earth Engine methodology. Remote Sensing Applications: Society and Environment, 100499, https://doi.org/10.1016/j.rsase.2021.100499 (2021).
Murray, N. J., Kennedy, E., Álvarez-Romero, J. G. & Lyons, M. B. Data freshness in ecology and conservation. Trends in Ecology and Evolution 36, 485–487, https://doi.org/10.1016/j.tree.2021.03.005 (2021).
Google Scholar
Source: Ecology - nature.com