in

Higher temperature extremes exacerbate negative disease effects in a social mammal

  • 1.

    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).

    Google Scholar 

  • 2.

    Fuller, A. et al. Physiological mechanisms in coping with climate change. Physiol. Biochem. Zool. 83, 713–720 (2010).

    Google Scholar 

  • 3.

    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).

    CAS 

    Google Scholar 

  • 4.

    Brawn, J. D., Benson, T. J., Stager, M., Sly, N. D. & Tarwater, C. E. Impacts of changing rainfall regime on the demography of tropical birds. Nat. Clim. Change 7, 133–136 (2016).

    Google Scholar 

  • 5.

    Summers, B. A. Climate change and animal disease. Vet. Pathol. 46, 1185–1186 (2009).

    CAS 

    Google Scholar 

  • 6.

    Randall, C. J. & van Woesik, R. Contemporary white-band disease in Caribbean corals driven by climate change. Nat. Clim. Change 5, 375–379 (2015).

    Google Scholar 

  • 7.

    Munson, L. et al. Climate extremes promote fatal co-infections during canine distemper epidemics in African lions. PLoS ONE 3, e2545 (2008).

    Google Scholar 

  • 8.

    Rohr, J. R. et al. Frontiers in climate change–disease research. Trends Ecol. Evol. 26, 270–277 (2011).

    Google Scholar 

  • 9.

    Zarnetske, P. L., Skelly, D. K. & Urban, M. C. Biotic multipliers of climate change. Science 336, 1516–1518 (2012).

    CAS 

    Google Scholar 

  • 10.

    Cohen, J. M., Sauer, E. L., Santiago, O., Spencer, S. & Rohr, J. R. Divergent impacts of warming weather on wildlife disease risk across climates. Science 370, eabb1702 (2020).

    CAS 

    Google Scholar 

  • 11.

    Cornwallis, C. K. et al. Cooperation facilitates the colonization of harsh environments. Nat. Ecol. Evol. 1, 0057 (2017).

    Google Scholar 

  • 12.

    Koenig, W. D. & Dickinson, J. L. (eds) Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior (Cambridge Univ. Press, 2016).

  • 13.

    Groenewoud, F. & Clutton-Brock, T. Meerkat helpers buffer the detrimental effects of adverse environmental conditions on fecundity, growth and survival. J. Anim. Ecol. 90, 641–652 (2020).

    Google Scholar 

  • 14.

    Langwig, K. E. et al. Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol. Lett. 15, 1050–1057 (2012).

    Google Scholar 

  • 15.

    Vicente, J., Delahay, R. J., Walker, N. J. & Cheeseman, C. L. Social organization and movement influence the incidence of bovine tuberculosis in an undisturbed high-density badger Meles meles population. J. Anim. Ecol. 76, 348–360 (2007).

    CAS 

    Google Scholar 

  • 16.

    Bermejo, M. et al. Ebola outbreak killed 5000 gorillas. Science 314, 1564 (2006).

    CAS 

    Google Scholar 

  • 17.

    Hanya, G. et al. Mass mortality of Japanese macaques in a western coastal forest of Yakushima. Ecol. Res. 19, 179–188 (2004).

    Google Scholar 

  • 18.

    Angulo, E. et al. Allee effects in social species. J. Anim. Ecol. 87, 47–58 (2018).

    Google Scholar 

  • 19.

    Woodroffe, R., Groom, R. & McNutt, J. W. Hot dogs: high ambient temperatures impact reproductive success in a tropical carnivore. J. Anim. Ecol. 86, 1329–1338 (2017).

    Google Scholar 

  • 20.

    Brandell, E. E., Dobson, A. P., Hudson, P. J., Cross, P. C. & Smith, D. W. A metapopulation model of social group dynamics and disease applied to Yellowstone wolves. Proc. Natl Acad. Sci. USA 118, 33649227 (2021).

    Google Scholar 

  • 21.

    Clutton-Brock, T. H. & Manser, M. in Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior (eds Koenig, W. D. & Dickinson, J. L.) 294–317 (Cambridge Univ. Press, 2016).

  • 22.

    Drewe, J. A. Who infects whom? Social networks and tuberculosis transmission in wild meerkats. Proc. R. Soc. B 277, 633–642 (2010).

    Google Scholar 

  • 23.

    Parsons, S. D. C., Drewe, J. A., van Pittius, N. C. G., Warren, R. M. & van Helden, P. D. Novel cause of tuberculosis in meerkats, South Africa. Emerg. Infect. Dis. 19, 2004–2007 (2013).

    Google Scholar 

  • 24.

    Duncan, C., Manser, M., & Clutton-Brock, T. H. Decline and fall: the causes of group failure in cooperatively breeding meerkats. Ecol. Evol. https://doi.org/10.1002/ece3.7655 (2021).

  • 25.

    Drewe, J. A., Foote, A. K., Sutcliffe, R. L. & Pearce, G. P. Pathology of Mycobacterium bovis infection in wild meerkats (Suricata suricatta). J. Comp. Pathol. 140, 12–24 (2009).

    CAS 

    Google Scholar 

  • 26.

    van Wilgen, N. J., Goodall, V. & Holness, S. Rising temperatures and changing rainfall patterns in South Africa’s national parks. Aquat. Microb. Ecol. 36, 706–721 (2016).

    Google Scholar 

  • 27.

    Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).

    CAS 

    Google Scholar 

  • 28.

    Fischer, E. M., Beyerle, U. & Knutti, R. Robust spatially aggregated projections of climate extremes. Nat. Clim. Change 3, 1033–1038 (2013).

    Google Scholar 

  • 29.

    Bourne, A. R., Cunningham, S. J., Spottiswoode, C. N. & Ridley, A. R. Hot droughts compromise interannual survival across all group sizes in a cooperatively breeding bird. Ecol. Lett. 23, 1776–1788 (2020).

    Google Scholar 

  • 30.

    Van de Ven, T. M. F. N., Fuller, A. & Clutton‐Brock, T. H. Effects of climate change on pup growth and survival in a cooperative mammal, the meerkat. Funct. Ecol. 34, 194–202 (2020).

    Google Scholar 

  • 31.

    Katale, B. Z. et al. Prevalence and risk factors for infection of bovine tuberculosis in indigenous cattle in the Serengeti ecosystem, Tanzania. BMC Vet. Res. 9, 267 (2013).

    Google Scholar 

  • 32.

    Paniw, M., Maag, N., Cozzi, G., Clutton-Brock, T. & Ozgul, A. Life history responses of meerkats to seasonal changes in extreme environments. Science 363, 631–635 (2019).

    CAS 

    Google Scholar 

  • 33.

    Dwyer, R. A., Witte, C., Buss, P., Goosen, W. J. & Miller, M. Epidemiology of tuberculosis in multi-host wildlife systems: implications for black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros. Front. Vet. Sci. 7, 580476 (2020).

    Google Scholar 

  • 34.

    Patterson, S., Drewe, J. A., Pfeiffer, D. U. & Clutton-Brock, T. H. Social and environmental factors affect tuberculosis related mortality in wild meerkats. J. Anim. Ecol. 86, 442–450 (2017).

    Google Scholar 

  • 35.

    Dubuc, C. et al. Increased food availability raises eviction rate in a cooperative breeding mammal. Biol. Lett. 13, 20160961 (2017).

    Google Scholar 

  • 36.

    Maag, N., Cozzi, G., Clutton-Brock, T. H. & Ozgul, A. Density‐dependent dispersal strategies in a cooperative breeder. Ecology 99, 1932–1941 (2018).

    Google Scholar 

  • 37.

    Ekernas, L. S. & Cords, M. Social and environmental factors influencing natal dispersal in blue monkeys, Cercopithecus mitis stuhlmanni. Anim. Behav. 73, 1009–1020 (2007).

    Google Scholar 

  • 38.

    Ozgul, A., Bateman, A. W., English, S., Coulson, T. & Clutton-Brock, T. H. Linking body mass and group dynamics in an obligate cooperative breeder. J. Anim. Ecol. 83, 1357–1366 (2014).

    Google Scholar 

  • 39.

    Tomlinson, A. J., Chambers, M. A., Wilson, G. J., McDonald, R. A. & Delahay, R. J. Sex-related heterogeneity in the life-history correlates of Mycobacterium bovis infection in European badgers (Meles meles). Transbound. Emerg. Dis. 60, 37–45 (2013).

    Google Scholar 

  • 40.

    Courchamp, F., Grenfell, B. & Clutton-Brock, T. H. Population dynamics of obligate cooperators. Proc. R. Soc. B 266, 557–563 (1999).

    Google Scholar 

  • 41.

    Lerch, B. A., Nolting, B. C. & Abbott, K. C. Why are demographic Allee effects so rarely seen in social animals? J. Anim. Ecol. 87, 1547–1559 (2018).

    Google Scholar 

  • 42.

    Borg, B. L., Brainerd, S. M., Meier, T. J. & Prugh, L. R. Impacts of breeder loss on social structure, reproduction and population growth in a social canid. J. Anim. Ecol. 84, 177–187 (2015).

    Google Scholar 

  • 43.

    Brown, P. T. & Caldeira, K. Greater future global warming inferred from Earth’s recent energy budget. Nature 552, 45–50 (2017).

    CAS 

    Google Scholar 

  • 44.

    Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

    Google Scholar 

  • 45.

    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).

    CAS 

    Google Scholar 

  • 46.

    Blackwood, J. C., Streicker, D. G., Altizer, S. & Rohani, P. Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc. Natl Acad. Sci. USA 110, 20837–20842 (2013).

    CAS 

    Google Scholar 

  • 47.

    Fenner, A. L., Godfrey, S. S. & Michael Bull, C. Using social networks to deduce whether residents or dispersers spread parasites in a lizard population. J. Anim. Ecol. 80, 835–843 (2011).

    Google Scholar 

  • 48.

    Paniw, M. et al. The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: a global analysis. J. Anim. Ecol. 90, 1398–1407 (2021).

    Google Scholar 

  • 49.

    McDonald, J. L. et al. Demographic buffering and compensatory recruitment promotes the persistence of disease in a wildlife population. Ecol. Lett. 19, 443–449 (2016).

    Google Scholar 

  • 50.

    Plowright, R. K., Sokolow, S. H., Gorman, M. E., Daszak, P. & Foley, J. E. Causal inference in disease ecology: investigating ecological drivers of disease emergence. Front. Ecol. Environ. 6, 420–429 (2008).

    Google Scholar 

  • 51.

    Russell, R., DiRenzo, G. V., Szymanski, J., Alger, K. & Grant, E. H. C. Principles and mechanisms of wildlife population persistence in the face of disease. Front. Ecol. Evol. 8, 344 (2020).

    Google Scholar 

  • 52.

    Baudouin, A. et al. Disease avoidance, and breeding group age and size condition the dispersal patterns of western lowland gorilla females. Ecology 100, e02786 (2019).

    Google Scholar 

  • 53.

    Townsend, A. K., Hawley, D. M., Stephenson, J. F. & Williams, K. E. G. Emerging infectious disease and the challenges of social distancing in human and non-human animals. Proc. R. Soc. B 287, 20201039 (2020).

    CAS 

    Google Scholar 

  • 54.

    Schisler, G. J., Bergersen, E. P. & Walker, P. G. Effects of multiple stressors on morbidity and mortality of fingerling rainbow trout infected with Myxobolus cerebralis. Trans. Am. Fish. Soc. 129, 859–865 (2000).

    Google Scholar 

  • 55.

    Härkönen, T., Harding, K., Rasmussen, T. D., Teilmann, J. & Dietz, R. Age- and sex-specific mortality patterns in an emerging wildlife epidemic: the phocine distemper in European harbour seals. PLoS ONE 2, e887 (2007).

    Google Scholar 

  • 56.

    Clutton-Brock, T. H. et al. Reproduction and survival of suricates (Suricata suricatta) in the southern Kalahari. Afr. J. Ecol. 37, 69–80 (1999).

    Google Scholar 

  • 57.

    Clutton-Brock, T. H., Hodge, S. J. & Flower, T. P. Group size and the suppression of subordinate reproduction in Kalahari meerkats. Anim. Behav. 76, 689–700 (2008).

    Google Scholar 

  • 58.

    Bateman, A. W., Ozgul, A., Coulson, T. & Clutton-Brock, T. H. Density dependence in group dynamics of a highly social mongoose, Suricata suricatta. J. Anim. Ecol. 81, 628–639 (2012).

    Google Scholar 

  • 59.

    Adler, R. F. et al. The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere 9, 138 (2018).

    Google Scholar 

  • 60.

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    CAS 

    Google Scholar 

  • 61.

    Parding, K. M. et al. GCMeval – an interactive tool for evaluation and selection of climate model ensembles. Clim. Serv. 18, 100167 (2020).

    Google Scholar 

  • 62.

    Delahay, R. J., Langton, S., Smith, G. C., Clifton-Hadley, R. S. & Cheeseman, C. L. The spatio-temporal distribution of Mycobacterium bovis (bovine tuberculosis) infection in a high-density badger population. J. Anim. Ecol. 69, 428–441 (2000).

    Google Scholar 

  • 63.

    Delahay, R. J. et al. Long-term temporal trends and estimated transmission rates for Mycobacterium bovis infection in an undisturbed high-density badger (Meles meles) population. Epidemiol. Infect. 141, 1445–1456 (2013).

    CAS 

    Google Scholar 

  • 64.

    Buzdugan, S. N., Chambers, M. A., Delahay, R. J. & Drewe, J. A. Diagnosis of tuberculosis in groups of badgers: an exploration of the impact of trapping efficiency, infection prevalence and the use of multiple tests. Epidemiol. Infect. 144, 1717–1727 (2016).

    CAS 

    Google Scholar 

  • 65.

    Akaike, H. in Selected Papers of Hirotugu Akaike (eds Parzen, E. et al.) 199–213 (Springer, 1998).

  • 66.

    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B Stat. 73, 3–36 (2011).

    Google Scholar 

  • 67.

    Grimm, V. et al. The ODD protocol: a review and first update. Ecol. Model. 221, 2760–2768 (2010).

    Google Scholar 

  • 68.

    Wood, S. N. Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466, 1102–1104 (2010).

    CAS 

    Google Scholar 

  • 69.

    Fronzek, S., Carter, T. R., Räisänen, J., Ruokolainen, L. & Luoto, M. Applying probabilistic projections of climate change with impact models: a case study for sub-Arctic palsa mires in Fennoscandia. Clim. Change 99, 515–534 (2010).

    Google Scholar 


  • Source: Ecology - nature.com

    Biological manganese-dependent sulfide oxidation impacts elemental gradients in redox-stratified systems: indications from the Black Sea water column

    3 Questions: What a single car can say about traffic