Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).
Fuller, A. et al. Physiological mechanisms in coping with climate change. Physiol. Biochem. Zool. 83, 713–720 (2010).
Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).
Google Scholar
Brawn, J. D., Benson, T. J., Stager, M., Sly, N. D. & Tarwater, C. E. Impacts of changing rainfall regime on the demography of tropical birds. Nat. Clim. Change 7, 133–136 (2016).
Summers, B. A. Climate change and animal disease. Vet. Pathol. 46, 1185–1186 (2009).
Google Scholar
Randall, C. J. & van Woesik, R. Contemporary white-band disease in Caribbean corals driven by climate change. Nat. Clim. Change 5, 375–379 (2015).
Munson, L. et al. Climate extremes promote fatal co-infections during canine distemper epidemics in African lions. PLoS ONE 3, e2545 (2008).
Rohr, J. R. et al. Frontiers in climate change–disease research. Trends Ecol. Evol. 26, 270–277 (2011).
Zarnetske, P. L., Skelly, D. K. & Urban, M. C. Biotic multipliers of climate change. Science 336, 1516–1518 (2012).
Google Scholar
Cohen, J. M., Sauer, E. L., Santiago, O., Spencer, S. & Rohr, J. R. Divergent impacts of warming weather on wildlife disease risk across climates. Science 370, eabb1702 (2020).
Google Scholar
Cornwallis, C. K. et al. Cooperation facilitates the colonization of harsh environments. Nat. Ecol. Evol. 1, 0057 (2017).
Koenig, W. D. & Dickinson, J. L. (eds) Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior (Cambridge Univ. Press, 2016).
Groenewoud, F. & Clutton-Brock, T. Meerkat helpers buffer the detrimental effects of adverse environmental conditions on fecundity, growth and survival. J. Anim. Ecol. 90, 641–652 (2020).
Langwig, K. E. et al. Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol. Lett. 15, 1050–1057 (2012).
Vicente, J., Delahay, R. J., Walker, N. J. & Cheeseman, C. L. Social organization and movement influence the incidence of bovine tuberculosis in an undisturbed high-density badger Meles meles population. J. Anim. Ecol. 76, 348–360 (2007).
Google Scholar
Bermejo, M. et al. Ebola outbreak killed 5000 gorillas. Science 314, 1564 (2006).
Google Scholar
Hanya, G. et al. Mass mortality of Japanese macaques in a western coastal forest of Yakushima. Ecol. Res. 19, 179–188 (2004).
Angulo, E. et al. Allee effects in social species. J. Anim. Ecol. 87, 47–58 (2018).
Woodroffe, R., Groom, R. & McNutt, J. W. Hot dogs: high ambient temperatures impact reproductive success in a tropical carnivore. J. Anim. Ecol. 86, 1329–1338 (2017).
Brandell, E. E., Dobson, A. P., Hudson, P. J., Cross, P. C. & Smith, D. W. A metapopulation model of social group dynamics and disease applied to Yellowstone wolves. Proc. Natl Acad. Sci. USA 118, 33649227 (2021).
Clutton-Brock, T. H. & Manser, M. in Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior (eds Koenig, W. D. & Dickinson, J. L.) 294–317 (Cambridge Univ. Press, 2016).
Drewe, J. A. Who infects whom? Social networks and tuberculosis transmission in wild meerkats. Proc. R. Soc. B 277, 633–642 (2010).
Parsons, S. D. C., Drewe, J. A., van Pittius, N. C. G., Warren, R. M. & van Helden, P. D. Novel cause of tuberculosis in meerkats, South Africa. Emerg. Infect. Dis. 19, 2004–2007 (2013).
Duncan, C., Manser, M., & Clutton-Brock, T. H. Decline and fall: the causes of group failure in cooperatively breeding meerkats. Ecol. Evol. https://doi.org/10.1002/ece3.7655 (2021).
Drewe, J. A., Foote, A. K., Sutcliffe, R. L. & Pearce, G. P. Pathology of Mycobacterium bovis infection in wild meerkats (Suricata suricatta). J. Comp. Pathol. 140, 12–24 (2009).
Google Scholar
van Wilgen, N. J., Goodall, V. & Holness, S. Rising temperatures and changing rainfall patterns in South Africa’s national parks. Aquat. Microb. Ecol. 36, 706–721 (2016).
Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).
Google Scholar
Fischer, E. M., Beyerle, U. & Knutti, R. Robust spatially aggregated projections of climate extremes. Nat. Clim. Change 3, 1033–1038 (2013).
Bourne, A. R., Cunningham, S. J., Spottiswoode, C. N. & Ridley, A. R. Hot droughts compromise interannual survival across all group sizes in a cooperatively breeding bird. Ecol. Lett. 23, 1776–1788 (2020).
Van de Ven, T. M. F. N., Fuller, A. & Clutton‐Brock, T. H. Effects of climate change on pup growth and survival in a cooperative mammal, the meerkat. Funct. Ecol. 34, 194–202 (2020).
Katale, B. Z. et al. Prevalence and risk factors for infection of bovine tuberculosis in indigenous cattle in the Serengeti ecosystem, Tanzania. BMC Vet. Res. 9, 267 (2013).
Paniw, M., Maag, N., Cozzi, G., Clutton-Brock, T. & Ozgul, A. Life history responses of meerkats to seasonal changes in extreme environments. Science 363, 631–635 (2019).
Google Scholar
Dwyer, R. A., Witte, C., Buss, P., Goosen, W. J. & Miller, M. Epidemiology of tuberculosis in multi-host wildlife systems: implications for black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros. Front. Vet. Sci. 7, 580476 (2020).
Patterson, S., Drewe, J. A., Pfeiffer, D. U. & Clutton-Brock, T. H. Social and environmental factors affect tuberculosis related mortality in wild meerkats. J. Anim. Ecol. 86, 442–450 (2017).
Dubuc, C. et al. Increased food availability raises eviction rate in a cooperative breeding mammal. Biol. Lett. 13, 20160961 (2017).
Maag, N., Cozzi, G., Clutton-Brock, T. H. & Ozgul, A. Density‐dependent dispersal strategies in a cooperative breeder. Ecology 99, 1932–1941 (2018).
Ekernas, L. S. & Cords, M. Social and environmental factors influencing natal dispersal in blue monkeys, Cercopithecus mitis stuhlmanni. Anim. Behav. 73, 1009–1020 (2007).
Ozgul, A., Bateman, A. W., English, S., Coulson, T. & Clutton-Brock, T. H. Linking body mass and group dynamics in an obligate cooperative breeder. J. Anim. Ecol. 83, 1357–1366 (2014).
Tomlinson, A. J., Chambers, M. A., Wilson, G. J., McDonald, R. A. & Delahay, R. J. Sex-related heterogeneity in the life-history correlates of Mycobacterium bovis infection in European badgers (Meles meles). Transbound. Emerg. Dis. 60, 37–45 (2013).
Courchamp, F., Grenfell, B. & Clutton-Brock, T. H. Population dynamics of obligate cooperators. Proc. R. Soc. B 266, 557–563 (1999).
Lerch, B. A., Nolting, B. C. & Abbott, K. C. Why are demographic Allee effects so rarely seen in social animals? J. Anim. Ecol. 87, 1547–1559 (2018).
Borg, B. L., Brainerd, S. M., Meier, T. J. & Prugh, L. R. Impacts of breeder loss on social structure, reproduction and population growth in a social canid. J. Anim. Ecol. 84, 177–187 (2015).
Brown, P. T. & Caldeira, K. Greater future global warming inferred from Earth’s recent energy budget. Nature 552, 45–50 (2017).
Google Scholar
Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).
Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).
Google Scholar
Blackwood, J. C., Streicker, D. G., Altizer, S. & Rohani, P. Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc. Natl Acad. Sci. USA 110, 20837–20842 (2013).
Google Scholar
Fenner, A. L., Godfrey, S. S. & Michael Bull, C. Using social networks to deduce whether residents or dispersers spread parasites in a lizard population. J. Anim. Ecol. 80, 835–843 (2011).
Paniw, M. et al. The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: a global analysis. J. Anim. Ecol. 90, 1398–1407 (2021).
McDonald, J. L. et al. Demographic buffering and compensatory recruitment promotes the persistence of disease in a wildlife population. Ecol. Lett. 19, 443–449 (2016).
Plowright, R. K., Sokolow, S. H., Gorman, M. E., Daszak, P. & Foley, J. E. Causal inference in disease ecology: investigating ecological drivers of disease emergence. Front. Ecol. Environ. 6, 420–429 (2008).
Russell, R., DiRenzo, G. V., Szymanski, J., Alger, K. & Grant, E. H. C. Principles and mechanisms of wildlife population persistence in the face of disease. Front. Ecol. Evol. 8, 344 (2020).
Baudouin, A. et al. Disease avoidance, and breeding group age and size condition the dispersal patterns of western lowland gorilla females. Ecology 100, e02786 (2019).
Townsend, A. K., Hawley, D. M., Stephenson, J. F. & Williams, K. E. G. Emerging infectious disease and the challenges of social distancing in human and non-human animals. Proc. R. Soc. B 287, 20201039 (2020).
Google Scholar
Schisler, G. J., Bergersen, E. P. & Walker, P. G. Effects of multiple stressors on morbidity and mortality of fingerling rainbow trout infected with Myxobolus cerebralis. Trans. Am. Fish. Soc. 129, 859–865 (2000).
Härkönen, T., Harding, K., Rasmussen, T. D., Teilmann, J. & Dietz, R. Age- and sex-specific mortality patterns in an emerging wildlife epidemic: the phocine distemper in European harbour seals. PLoS ONE 2, e887 (2007).
Clutton-Brock, T. H. et al. Reproduction and survival of suricates (Suricata suricatta) in the southern Kalahari. Afr. J. Ecol. 37, 69–80 (1999).
Clutton-Brock, T. H., Hodge, S. J. & Flower, T. P. Group size and the suppression of subordinate reproduction in Kalahari meerkats. Anim. Behav. 76, 689–700 (2008).
Bateman, A. W., Ozgul, A., Coulson, T. & Clutton-Brock, T. H. Density dependence in group dynamics of a highly social mongoose, Suricata suricatta. J. Anim. Ecol. 81, 628–639 (2012).
Adler, R. F. et al. The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere 9, 138 (2018).
Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).
Google Scholar
Parding, K. M. et al. GCMeval – an interactive tool for evaluation and selection of climate model ensembles. Clim. Serv. 18, 100167 (2020).
Delahay, R. J., Langton, S., Smith, G. C., Clifton-Hadley, R. S. & Cheeseman, C. L. The spatio-temporal distribution of Mycobacterium bovis (bovine tuberculosis) infection in a high-density badger population. J. Anim. Ecol. 69, 428–441 (2000).
Delahay, R. J. et al. Long-term temporal trends and estimated transmission rates for Mycobacterium bovis infection in an undisturbed high-density badger (Meles meles) population. Epidemiol. Infect. 141, 1445–1456 (2013).
Google Scholar
Buzdugan, S. N., Chambers, M. A., Delahay, R. J. & Drewe, J. A. Diagnosis of tuberculosis in groups of badgers: an exploration of the impact of trapping efficiency, infection prevalence and the use of multiple tests. Epidemiol. Infect. 144, 1717–1727 (2016).
Google Scholar
Akaike, H. in Selected Papers of Hirotugu Akaike (eds Parzen, E. et al.) 199–213 (Springer, 1998).
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B Stat. 73, 3–36 (2011).
Grimm, V. et al. The ODD protocol: a review and first update. Ecol. Model. 221, 2760–2768 (2010).
Wood, S. N. Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466, 1102–1104 (2010).
Google Scholar
Fronzek, S., Carter, T. R., Räisänen, J., Ruokolainen, L. & Luoto, M. Applying probabilistic projections of climate change with impact models: a case study for sub-Arctic palsa mires in Fennoscandia. Clim. Change 99, 515–534 (2010).
Source: Ecology - nature.com