Gregory, R. D. & van Strien, A. Wild bird indicators: Using composite population trends of birds as measures of environmental health. Ornithol. Sci. 9, 3–22 (2010).
Google Scholar
Cox, D. T. C. & Gaston, K. J. Urban bird feeding: Connecting people with nature. PLoS ONE 11, e0158717 (2016).
Google Scholar
Anderson, R. M. & May, R. M. Population biology of infectious diseases: Part I. Nature 280, 361–367 (1979).
Google Scholar
Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).
Google Scholar
Smith, K. F., Acevedo-Whitehouse, K. & Pedersen, A. B. The role of infectious diseases in biological conservation. Anim. Conserv. 12, 1–12 (2009).
Google Scholar
Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).
Google Scholar
Estrada-Peña, A., Ostfeld, R. S., Peterson, A. T., Poulin, R. & de la Fuente, J. Effects of environmental change on zoonotic disease risk: An ecological primer. Trends Parasitol. 30, 205–214 (2014).
Google Scholar
Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife–threats to biodiversity and human health. Science 287(5452), 443–449 (2000).
Google Scholar
Pedersen, A. B., Jones, K. E., Nunn, C. L. & Altizer, S. Infectious diseases and extinction risk in wild mammals. Conserv. Biol. 21, 1269–1279 (2007).
Google Scholar
Atkinson, C. T. & Samuel, M. D. Avian malaria Plasmodium relictum in native Hawaiian forest birds: Epizootiology and demographic impacts on àapapane Himatione sanguinea. J. Avian Biol. 41, 357–366 (2010).
Google Scholar
George, T. L. et al. Persistent impacts of West Nile virus on North American bird populations. Proc. Natl. Acad. Sci. USA. 112, 14290–14294 (2015).
Google Scholar
Dhondt, A. A., Tessaglia, D. L. & Slothower, R. L. Epidemic mycoplasmal conjunctivitis in house finches from Eastern North America. J. Wildl. Dis. 34, 265–280 (1998).
Google Scholar
Monterroso, P. et al. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs. Sci. Rep. 6, 36072 (2016).
Google Scholar
Cheng, T. L. et al. The scope and severity of white-nose syndrome on hibernating bats in North America. Conserv. Biol. 35, 1586–1597 (2021).
Google Scholar
Rushton, S. P. et al. Disease threats posed by alien species: The role of a poxvirus in the decline of the native red squirrel in Britain. Epidemiol. Infect. 134, 521–533 (2006).
Google Scholar
Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363(6434), 1459–1463 (2019).
Google Scholar
Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).
Google Scholar
Murray, M. H. et al. City sicker? A meta-analysis of wildlife health and urbanization. Front. Ecol. Environ. 17, 575–583 (2019).
Google Scholar
Giraudeau, M., Mousel, M., Earl, S. & McGraw, K. Parasites in the city: Degree of urbanization predicts poxvirus and coccidian infections in house finches (Haemorhous mexicanus). PLoS ONE 9, e86747 (2014).
Google Scholar
Shutt, J. D. & Lees, A. C. Killing with kindness: Does widespread generalised provisioning of wildlife help or hinder biodiversity conservation efforts? Biol. Conserv. 261, 109295 (2021).
Google Scholar
Van Doren, B. M. et al. Human activity shapes the wintering ecology of a migratory bird. Glob. Chang. Biol. 27, 2715–2727 (2021).
Google Scholar
Plummer, K. E., Risely, K., Toms, M. P. & Siriwardena, G. M. The composition of British bird communities is associated with long-term garden bird feeding. Nat. Commun. 10, 2088 (2019).
Google Scholar
Lawson, B. et al. Health hazards to wild birds and risk factors associated with anthropogenic food provisioning. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170091 (2018).
Galbraith, J. A., Stanley, M. C., Jones, D. N. & Beggs, J. R. Experimental feeding regime influences urban bird disease dynamics. J. Avian Biol. 48, 700–713 (2017).
Google Scholar
Siriwardena, G. M. et al. The effect of supplementary winter seed food on breeding populations of farmland birds: Evidence from two large-scale experiments. J. Appl. Ecol. 44, 920–932 (2007).
Google Scholar
Kubasiewicz, L. M., Bunnefeld, N., Tulloch, A. I. T., Quine, C. P. & Park, K. J. Diversionary feeding: An effective management strategy for conservation conflict? Biodivers. Conserv. 25, 1–22 (2016).
Google Scholar
Lawson, B. et al. A clonal strain of Trichomonas gallinae is the aetiologic agent of an emerging avian epidemic disease. Infect. Genet. Evol. 11, 1638–1645 (2011).
Google Scholar
Robinson, R. A. et al. Emerging infectious disease leads to rapid population declines of common British birds. PLoS ONE 5, e12215 (2010).
Google Scholar
Forrester, D. J. & Foster, G. W. Trichomonosis. In: Parasitic Diseases of Wild Birds 120–153 (Wiley-Blackwell, 2008).
Lawson, B. et al. Evidence of spread of the emerging infectious disease, finch trichomonosis, by migrating birds. EcoHealth 8, 143–153 (2011).
Google Scholar
Lawson, B. et al. The emergence and spread of finch trichomonosis in the British Isles. Philos. Trans. R. Soc. B Biol. Sci. 367, 2852–2863 (2012).
Google Scholar
Woodward, I. D. et al. BirdTrends 2020: Trends in numbers, breeding success and survival for UK breeding birds. Research Report 732. BTO, Thetford. (2020).
Enoksson, B. Age- and sex-related differences in dominance and foraging behaviour of nuthatches Sitta europaea. Anim. Behav. 36, 231–238 (1988).
Google Scholar
Tarvin, K. A. & Woolfenden, G. E. Patterns of dominance and aggressive behavior in blue jays at a feeder. Condor 99, 434–444 (1997).
Google Scholar
Brittingham, M. C. & Temple, S. A. Use of winter feeders by black-capped chickadees. Wildl. Soc. 56, 103–110 (1992).
Woodward, I. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69–104 (2020).
Musgrove, A. J. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 106, 64–100 (2013).
Wernham, C. et al. The Migration Atlas: Movements of the Birds of Britain and Ireland. (T & AD Poyser, 2002).
Main, I. G. The partial migration of Fennoscandian Greenfinches Carduelis chloris. Ringing Migr. 20, 167–180 (2000).
Google Scholar
Lack, P. C. The Atlas of Wintering Birds in Britain and Ireland. (T. & A.D. Poyser, 1986).
Robinson, R. A. BirdFacts: profiles of birds occurring in Britain & Ireland. BTO, Thetford (2005). Available at: http://www.bto.org/birdfacts. Accessed: 15 May 2022.
Tratalos, J. et al. Bird densities are associated with household densities. Glob. Chang. Biol. 13, 1685–1695 (2007).
Google Scholar
Gregory, R. D. Broad-scale habitat use of sparrows, finches and buntings in Britain. Die Vogelwelt 120, 47–57 (1999).
Newton, I. Finches. New Naturalist Series, Volume: 55. (HarperCollins, 1972).
Robinson, R. A., Baillie, S. R. & Crick, H. Q. P. Weather-dependent survival: Implications of climate change for passerine population processes. Ibis. 149, 357–364 (2007).
Google Scholar
Crick, H. Q. P. A bird-habitat coding system for use in Britain and Ireland incorporating aspects of land-management and human activity. Bird Study 39, 1–12 (1992).
Google Scholar
Davies, Z. G. et al. A national scale inventory of resource provision for biodiversity within domestic gardens. Biol. Conserv. 142, 761–771 (2009).
Google Scholar
Balmer, D. E. et al. Bird Atlas 2007–11: The breeding and wintering birds of Britain and Ireland. (BTO Books, 2013).
Lawson, B. et al. Epidemiology of salmonellosis in garden birds in England and Wales, 1993 to 2003. EcoHealth 7, 294–306 (2010).
Google Scholar
Svensson, L. Identification guide to European passerines, 4th edition. (BTO, 1992).
Jenni, L. & Winkler, R. Moult and ageing of European passerines, 2nd edition. (Helm, 2020).
Baillie, S. R. The contribution of ringing to the conservation and management of bird populations: A review. Ardea 89, 167–184 (2001).
Kéry, M. & Schaub, M. Bayesian Population Analysis using WinBUGS: A hierarchical perspective (Academic Press, 2012).
R Core Team. R: A language and environment for statistical computing. (2020).
Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. in Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003) (eds. Hornik, K., Leisch, F. & Zeileis, A.) (2003).
Su, Y.-S. & Yajima, M. R2jags: Using R to Run ‘JAGS’. R package version 0.6–1. (2020).
Robinson, R. A., Morrison, C. A. & Baillie, S. R. Integrating demographic data: Towards a framework for monitoring wildlife populations at large spatial scales. Methods Ecol. Evol. 5, 1361–1372 (2014).
Google Scholar
Newson, S. E., Evans, K. L., Noble, D. G., Greenwood, J. J. D. & Gaston, K. J. Use of distance sampling to improve estimates of national population sizes for common and widespread breeding birds in the UK. J. Appl. Ecol. 45, 1330–1338 (2008).
Google Scholar
Newson, S. E., Massimino, D., Johnston, A., Baillie, S. R. & Pearce-Higgins, J. W. Should we account for detectability in population trends? Bird Study 60, 384–390 (2013).
Google Scholar
Crick, H. Q. P., Baillie, S. R. & Leech, D. I. The UK Nest Record Scheme: its value for science and conservation. Bird Study 50, 254–270 (2003).
Google Scholar
Abadi, F., Gimenez, O., Arlettaz, R. & Schaub, M. An assessment of integrated population models: Bias, accuracy, and violation of the assumption of independence. Ecology 91, 7–14 (2010).
Google Scholar
Plard, F., Turek, D., Grüebler, M. U. & Schaub, M. IPM2: Toward better understanding and forecasting of population dynamics. Ecol. Monogr. 89, e01364 (2019).
Google Scholar
Weegman, M. D., Arnold, T. W., Clark, R. G. & Schaub, M. Partial and complete dependency among data sets has minimal consequence on estimates from integrated population models. Ecol. Appl. 31, e02258 (2021).
Google Scholar
Koons, D. N., Iles, D. T., Schaub, M. & Caswell, H. A life-history perspective on the demographic drivers of structured population dynamics in changing environments. Ecol. Lett. 19, 1023–1031 (2016).
Google Scholar
Koons, D. N., Arnold, T. W. & Schaub, M. Understanding the demographic drivers of realized population growth rates. Ecol Appl. 27, 2102–2115 (2017).
Google Scholar
Caswell, H. Matrix population models: Construction, analysis and interpretation. (Sinauer Associates, 2001).
Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio package in R. J. Stat. Softw. 22, 1–23 (2007).
Google Scholar
Stanbury, A. et al. The status of our bird populations: The fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723–747 (2021).
Lehikoinen, A., Lehikoinen, E., Valkama, J., Väisänen, R. A. & Isomursu, M. Impacts of trichomonosis epidemics on greenfinch Chloris chloris and chaffinch Fringilla coelebs populations in Finland. Ibis 155, 357–366 (2013).
Google Scholar
PECBMS. EBCC/BirdLife/RSPB/CSO’ Pan-European Common Bird Monitoring Scheme. (2021). Available at: https://pecbms.info/. (Accessed: 14th July 2022)
Keller, V. et al. European Breeding Bird Atlas 2: Distribution, Abundance and Change. (European Bird Census Council and Lynx Edicions, 2020).
Rijks, J. M. et al. Trichomonosis in greenfinches (Chloris chloris) in the Netherlands 2009–2017: A concealed threat. Front. Vet. Sci. 6, 425 (2019).
Google Scholar
Boele, A. et al. Broedvogels in Nederland in 2020. Sovonrapport 2022/05. (Sovon Vogelonderzoek Nederland, Nijmegen., 2022).
Jones, D. The Birds at My Table: Why We Feed Wild Birds and Why It Matters. (Cornell University Press, 2018).
Pennycott, T. W. et al. Causes of death of wild birds of the family fringillidae in Britain. Vet. Rec. 143, 155–158 (1998).
Google Scholar
Bouwman, K. M. & Hawley, D. M. Sickness behaviour acting as an evolutionary trap? Male house finches preferentially feed near diseased conspecifics. Biol. Lett. 6, 462–465 (2010).
Google Scholar
Lawson, B. et al. Acute necrotising pneumonitis associated with Suttonella ornithocola infection in tits (Paridae). Vet. J. 188, 96–100 (2011).
Google Scholar
Clewley, G. D., Robinson, R. A. & Clark, J. A. Estimating mortality rates among passerines caught for ringing with mist nets using data from previously ringed birds. Ecol. Evol. 8, 5164–5172 (2018).
Google Scholar
Francis, M. L. et al. Effects of supplementary feeding on interspecific dominance hierarchies in garden birds. PLoS ONE 13, e0202152 (2018).
Google Scholar
Wojczulanis-Jakubas, K., Kulpińska, M. & Minias, P. Who bullies whom at a garden feeder? Interspecific agonistic interactions of small passerines during a cold winter. J. Ethol. 33, 159–163 (2015).
Google Scholar
Cramp, S. Handbook of the Birds of Europe, the Middle East and North Africa. Volume VIII: Crows to Finches. (Oxford University Press, 1994).
Brook, B. W. & Bradshaw, C. J. A. Strength of evidence for density dependence in abundance time series of 1198 species. Ecology 87, 1445–1451 (2006).
Google Scholar
Hochachka, W. M. & Dhondt, A. A. Density-dependent decline of host abundance resulting from a new infectious disease. Proc. Natl. Acad. Sci. USA. 97, 5303–5306 (2000).
Google Scholar
Hochachka, W. M., Dobson, A. P., Hawley, D. M. & Dhondt, A. A. Host population dynamics in the face of an evolving pathogen. J. Anim. Ecol. 90, 1480–1491 (2021).
Google Scholar
Chi, J. F. et al. The finch epidemic strain of Trichomonas gallinae is predominant in British non-passerines. Parasitology 140, 1234–1245 (2013).
Google Scholar
Orros, M. E. & Fellowes, M. D. E. Wild bird feeding in an urban area: Intensity, economics and numbers of individuals supported. Acta Ornithol. 50, 43–58 (2015).
Google Scholar
Dirren, S., Borel, S., Wolfrum, N. & Korner-Nievergelt, F. Trichomonas gallinae infections in the naïve host Montifringilla nivalis subsp nivalis. J. Ornithol. 163, 333–337 (2022).
Google Scholar
Tulloch, A. I. T., Possingham, H. P., Joseph, L. N., Szabo, J. & Martin, T. G. Realising the full potential of citizen science monitoring programs. Biol. Conserv. 165, 128–138 (2013).
Google Scholar
Silvertown, J., Buesching, C., Jacobson, S. & Rebelo, T. Citizen science and nature conservation. in Key Topics in Conservation Biology 2 (eds. Macdonald, D. W. & Willis, K. J.) 127–142 (John Wiley & Sons, 2013).
Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).
Google Scholar
Baillie, S. R., Wernham, C. V. & Clark, J. A. Development of the British and Irish ringing scheme and its role in conservation biology. Ringing Migr. 19, S5–S19 (1999).
Google Scholar
Greenwood, J. J. D. Citizens, science and bird conservation. J. Ornithol. 148, S77–S124 (2007).
Google Scholar
Horns, J. J., Adler, F. R. & Şekercioğlu, Ç. H. Using opportunistic citizen science data to estimate avian population trends. Biol. Conserv. 221, 151–159 (2018).
Google Scholar
Ryan, R. L., Kaplan, R. & Grese, R. E. Predicting volunteer commitment in environmental stewardship programmes. J. Environ. Plan. Manag. 44, 629–648 (2001).
Google Scholar
Maund, P. R. et al. What motivates the masses: Understanding why people contribute to conservation citizen science projects. Biol. Conserv. 246, 108587 (2020).
Google Scholar
Martin, V. Y. & Greig, E. I. Young adults’ motivations to feed wild birds and influences on their potential participation in citizen science: An exploratory study. Biol. Conserv. 235, 295–307 (2019).
Google Scholar
Cox, D. T. C. & Gaston, K. J. Human–nature interactions and the consequences and drivers of provisioning wildlife. Philos.Trans. R. Soc. B Biol. Sci. 373, 20170092 (2018).
Google Scholar
Murray, M. H., Becker, D. J., Hall, R. J. & Hernandez, S. M. Wildlife health and supplemental feeding: A review and management recommendations. Biol. Conserv. 204, 163–174 (2016).
Google Scholar
Rocha, G. & Quillfeldt, P. Effect of supplementary food on age ratios of European turtle doves (Streptopelia turtur L.). Anim. Biodivers. Conserv. 38, 11–21 (2015).
Google Scholar
Source: Ecology - nature.com