in

Hinfluences severe disease-mediated population declines in two of the most common garden bird species in Great Britain

  • Gregory, R. D. & van Strien, A. Wild bird indicators: Using composite population trends of birds as measures of environmental health. Ornithol. Sci. 9, 3–22 (2010).

    Article 

    Google Scholar 

  • Cox, D. T. C. & Gaston, K. J. Urban bird feeding: Connecting people with nature. PLoS ONE 11, e0158717 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Anderson, R. M. & May, R. M. Population biology of infectious diseases: Part I. Nature 280, 361–367 (1979).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smith, K. F., Acevedo-Whitehouse, K. & Pedersen, A. B. The role of infectious diseases in biological conservation. Anim. Conserv. 12, 1–12 (2009).

    Article 

    Google Scholar 

  • Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Estrada-Peña, A., Ostfeld, R. S., Peterson, A. T., Poulin, R. & de la Fuente, J. Effects of environmental change on zoonotic disease risk: An ecological primer. Trends Parasitol. 30, 205–214 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife–threats to biodiversity and human health. Science 287(5452), 443–449 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pedersen, A. B., Jones, K. E., Nunn, C. L. & Altizer, S. Infectious diseases and extinction risk in wild mammals. Conserv. Biol. 21, 1269–1279 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Atkinson, C. T. & Samuel, M. D. Avian malaria Plasmodium relictum in native Hawaiian forest birds: Epizootiology and demographic impacts on àapapane Himatione sanguinea. J. Avian Biol. 41, 357–366 (2010).

    Article 

    Google Scholar 

  • George, T. L. et al. Persistent impacts of West Nile virus on North American bird populations. Proc. Natl. Acad. Sci. USA. 112, 14290–14294 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dhondt, A. A., Tessaglia, D. L. & Slothower, R. L. Epidemic mycoplasmal conjunctivitis in house finches from Eastern North America. J. Wildl. Dis. 34, 265–280 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Monterroso, P. et al. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs. Sci. Rep. 6, 36072 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cheng, T. L. et al. The scope and severity of white-nose syndrome on hibernating bats in North America. Conserv. Biol. 35, 1586–1597 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rushton, S. P. et al. Disease threats posed by alien species: The role of a poxvirus in the decline of the native red squirrel in Britain. Epidemiol. Infect. 134, 521–533 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363(6434), 1459–1463 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Murray, M. H. et al. City sicker? A meta-analysis of wildlife health and urbanization. Front. Ecol. Environ. 17, 575–583 (2019).

    Article 

    Google Scholar 

  • Giraudeau, M., Mousel, M., Earl, S. & McGraw, K. Parasites in the city: Degree of urbanization predicts poxvirus and coccidian infections in house finches (Haemorhous mexicanus). PLoS ONE 9, e86747 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Shutt, J. D. & Lees, A. C. Killing with kindness: Does widespread generalised provisioning of wildlife help or hinder biodiversity conservation efforts? Biol. Conserv. 261, 109295 (2021).

    Article 

    Google Scholar 

  • Van Doren, B. M. et al. Human activity shapes the wintering ecology of a migratory bird. Glob. Chang. Biol. 27, 2715–2727 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Plummer, K. E., Risely, K., Toms, M. P. & Siriwardena, G. M. The composition of British bird communities is associated with long-term garden bird feeding. Nat. Commun. 10, 2088 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lawson, B. et al. Health hazards to wild birds and risk factors associated with anthropogenic food provisioning. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170091 (2018).

  • Galbraith, J. A., Stanley, M. C., Jones, D. N. & Beggs, J. R. Experimental feeding regime influences urban bird disease dynamics. J. Avian Biol. 48, 700–713 (2017).

    Article 

    Google Scholar 

  • Siriwardena, G. M. et al. The effect of supplementary winter seed food on breeding populations of farmland birds: Evidence from two large-scale experiments. J. Appl. Ecol. 44, 920–932 (2007).

    Article 

    Google Scholar 

  • Kubasiewicz, L. M., Bunnefeld, N., Tulloch, A. I. T., Quine, C. P. & Park, K. J. Diversionary feeding: An effective management strategy for conservation conflict? Biodivers. Conserv. 25, 1–22 (2016).

    Article 

    Google Scholar 

  • Lawson, B. et al. A clonal strain of Trichomonas gallinae is the aetiologic agent of an emerging avian epidemic disease. Infect. Genet. Evol. 11, 1638–1645 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Robinson, R. A. et al. Emerging infectious disease leads to rapid population declines of common British birds. PLoS ONE 5, e12215 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Forrester, D. J. & Foster, G. W. Trichomonosis. In: Parasitic Diseases of Wild Birds 120–153 (Wiley-Blackwell, 2008).

  • Lawson, B. et al. Evidence of spread of the emerging infectious disease, finch trichomonosis, by migrating birds. EcoHealth 8, 143–153 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Lawson, B. et al. The emergence and spread of finch trichomonosis in the British Isles. Philos. Trans. R. Soc. B Biol. Sci. 367, 2852–2863 (2012).

    Article 

    Google Scholar 

  • Woodward, I. D. et al. BirdTrends 2020: Trends in numbers, breeding success and survival for UK breeding birds. Research Report 732. BTO, Thetford. (2020).

  • Enoksson, B. Age- and sex-related differences in dominance and foraging behaviour of nuthatches Sitta europaea. Anim. Behav. 36, 231–238 (1988).

    Article 

    Google Scholar 

  • Tarvin, K. A. & Woolfenden, G. E. Patterns of dominance and aggressive behavior in blue jays at a feeder. Condor 99, 434–444 (1997).

    Article 

    Google Scholar 

  • Brittingham, M. C. & Temple, S. A. Use of winter feeders by black-capped chickadees. Wildl. Soc. 56, 103–110 (1992).

    Google Scholar 

  • Woodward, I. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69–104 (2020).

    Google Scholar 

  • Musgrove, A. J. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 106, 64–100 (2013).

    Google Scholar 

  • Wernham, C. et al. The Migration Atlas: Movements of the Birds of Britain and Ireland. (T & AD Poyser, 2002).

  • Main, I. G. The partial migration of Fennoscandian Greenfinches Carduelis chloris. Ringing Migr. 20, 167–180 (2000).

    Article 

    Google Scholar 

  • Lack, P. C. The Atlas of Wintering Birds in Britain and Ireland. (T. & A.D. Poyser, 1986).

  • Robinson, R. A. BirdFacts: profiles of birds occurring in Britain & Ireland. BTO, Thetford (2005). Available at: http://www.bto.org/birdfacts. Accessed: 15 May 2022.

  • Tratalos, J. et al. Bird densities are associated with household densities. Glob. Chang. Biol. 13, 1685–1695 (2007).

    ADS 
    Article 

    Google Scholar 

  • Gregory, R. D. Broad-scale habitat use of sparrows, finches and buntings in Britain. Die Vogelwelt 120, 47–57 (1999).

    Google Scholar 

  • Newton, I. Finches. New Naturalist Series, Volume: 55. (HarperCollins, 1972).

  • Robinson, R. A., Baillie, S. R. & Crick, H. Q. P. Weather-dependent survival: Implications of climate change for passerine population processes. Ibis. 149, 357–364 (2007).

    Article 

    Google Scholar 

  • Crick, H. Q. P. A bird-habitat coding system for use in Britain and Ireland incorporating aspects of land-management and human activity. Bird Study 39, 1–12 (1992).

    Article 

    Google Scholar 

  • Davies, Z. G. et al. A national scale inventory of resource provision for biodiversity within domestic gardens. Biol. Conserv. 142, 761–771 (2009).

    Article 

    Google Scholar 

  • Balmer, D. E. et al. Bird Atlas 2007–11: The breeding and wintering birds of Britain and Ireland. (BTO Books, 2013).

  • Lawson, B. et al. Epidemiology of salmonellosis in garden birds in England and Wales, 1993 to 2003. EcoHealth 7, 294–306 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Svensson, L. Identification guide to European passerines, 4th edition. (BTO, 1992).

  • Jenni, L. & Winkler, R. Moult and ageing of European passerines, 2nd edition. (Helm, 2020).

  • Baillie, S. R. The contribution of ringing to the conservation and management of bird populations: A review. Ardea 89, 167–184 (2001).

    Google Scholar 

  • Kéry, M. & Schaub, M. Bayesian Population Analysis using WinBUGS: A hierarchical perspective (Academic Press, 2012).

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. (2020).

  • Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. in Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003) (eds. Hornik, K., Leisch, F. & Zeileis, A.) (2003).

  • Su, Y.-S. & Yajima, M. R2jags: Using R to Run ‘JAGS’. R package version 0.6–1. (2020).

  • Robinson, R. A., Morrison, C. A. & Baillie, S. R. Integrating demographic data: Towards a framework for monitoring wildlife populations at large spatial scales. Methods Ecol. Evol. 5, 1361–1372 (2014).

    Article 

    Google Scholar 

  • Newson, S. E., Evans, K. L., Noble, D. G., Greenwood, J. J. D. & Gaston, K. J. Use of distance sampling to improve estimates of national population sizes for common and widespread breeding birds in the UK. J. Appl. Ecol. 45, 1330–1338 (2008).

    Article 

    Google Scholar 

  • Newson, S. E., Massimino, D., Johnston, A., Baillie, S. R. & Pearce-Higgins, J. W. Should we account for detectability in population trends? Bird Study 60, 384–390 (2013).

    Article 

    Google Scholar 

  • Crick, H. Q. P., Baillie, S. R. & Leech, D. I. The UK Nest Record Scheme: its value for science and conservation. Bird Study 50, 254–270 (2003).

    Article 

    Google Scholar 

  • Abadi, F., Gimenez, O., Arlettaz, R. & Schaub, M. An assessment of integrated population models: Bias, accuracy, and violation of the assumption of independence. Ecology 91, 7–14 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Plard, F., Turek, D., Grüebler, M. U. & Schaub, M. IPM2: Toward better understanding and forecasting of population dynamics. Ecol. Monogr. 89, e01364 (2019).

    Article 

    Google Scholar 

  • Weegman, M. D., Arnold, T. W., Clark, R. G. & Schaub, M. Partial and complete dependency among data sets has minimal consequence on estimates from integrated population models. Ecol. Appl. 31, e02258 (2021).

    Article 

    Google Scholar 

  • Koons, D. N., Iles, D. T., Schaub, M. & Caswell, H. A life-history perspective on the demographic drivers of structured population dynamics in changing environments. Ecol. Lett. 19, 1023–1031 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Koons, D. N., Arnold, T. W. & Schaub, M. Understanding the demographic drivers of realized population growth rates. Ecol Appl. 27, 2102–2115 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Caswell, H. Matrix population models: Construction, analysis and interpretation. (Sinauer Associates, 2001).

  • Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio package in R. J. Stat. Softw. 22, 1–23 (2007).

    Article 

    Google Scholar 

  • Stanbury, A. et al. The status of our bird populations: The fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723–747 (2021).

    Google Scholar 

  • Lehikoinen, A., Lehikoinen, E., Valkama, J., Väisänen, R. A. & Isomursu, M. Impacts of trichomonosis epidemics on greenfinch Chloris chloris and chaffinch Fringilla coelebs populations in Finland. Ibis 155, 357–366 (2013).

    Article 

    Google Scholar 

  • PECBMS. EBCC/BirdLife/RSPB/CSO’ Pan-European Common Bird Monitoring Scheme. (2021). Available at: https://pecbms.info/. (Accessed: 14th July 2022)

  • Keller, V. et al. European Breeding Bird Atlas 2: Distribution, Abundance and Change. (European Bird Census Council and Lynx Edicions, 2020).

  • Rijks, J. M. et al. Trichomonosis in greenfinches (Chloris chloris) in the Netherlands 2009–2017: A concealed threat. Front. Vet. Sci. 6, 425 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Boele, A. et al. Broedvogels in Nederland in 2020. Sovonrapport 2022/05. (Sovon Vogelonderzoek Nederland, Nijmegen., 2022).

  • Jones, D. The Birds at My Table: Why We Feed Wild Birds and Why It Matters. (Cornell University Press, 2018).

  • Pennycott, T. W. et al. Causes of death of wild birds of the family fringillidae in Britain. Vet. Rec. 143, 155–158 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bouwman, K. M. & Hawley, D. M. Sickness behaviour acting as an evolutionary trap? Male house finches preferentially feed near diseased conspecifics. Biol. Lett. 6, 462–465 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lawson, B. et al. Acute necrotising pneumonitis associated with Suttonella ornithocola infection in tits (Paridae). Vet. J. 188, 96–100 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Clewley, G. D., Robinson, R. A. & Clark, J. A. Estimating mortality rates among passerines caught for ringing with mist nets using data from previously ringed birds. Ecol. Evol. 8, 5164–5172 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Francis, M. L. et al. Effects of supplementary feeding on interspecific dominance hierarchies in garden birds. PLoS ONE 13, e0202152 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Wojczulanis-Jakubas, K., Kulpińska, M. & Minias, P. Who bullies whom at a garden feeder? Interspecific agonistic interactions of small passerines during a cold winter. J. Ethol. 33, 159–163 (2015).

    Article 

    Google Scholar 

  • Cramp, S. Handbook of the Birds of Europe, the Middle East and North Africa. Volume VIII: Crows to Finches. (Oxford University Press, 1994).

  • Brook, B. W. & Bradshaw, C. J. A. Strength of evidence for density dependence in abundance time series of 1198 species. Ecology 87, 1445–1451 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Hochachka, W. M. & Dhondt, A. A. Density-dependent decline of host abundance resulting from a new infectious disease. Proc. Natl. Acad. Sci. USA. 97, 5303–5306 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hochachka, W. M., Dobson, A. P., Hawley, D. M. & Dhondt, A. A. Host population dynamics in the face of an evolving pathogen. J. Anim. Ecol. 90, 1480–1491 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chi, J. F. et al. The finch epidemic strain of Trichomonas gallinae is predominant in British non-passerines. Parasitology 140, 1234–1245 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Orros, M. E. & Fellowes, M. D. E. Wild bird feeding in an urban area: Intensity, economics and numbers of individuals supported. Acta Ornithol. 50, 43–58 (2015).

    Article 

    Google Scholar 

  • Dirren, S., Borel, S., Wolfrum, N. & Korner-Nievergelt, F. Trichomonas gallinae infections in the naïve host Montifringilla nivalis subsp nivalis. J. Ornithol. 163, 333–337 (2022).

    Article 

    Google Scholar 

  • Tulloch, A. I. T., Possingham, H. P., Joseph, L. N., Szabo, J. & Martin, T. G. Realising the full potential of citizen science monitoring programs. Biol. Conserv. 165, 128–138 (2013).

    Article 

    Google Scholar 

  • Silvertown, J., Buesching, C., Jacobson, S. & Rebelo, T. Citizen science and nature conservation. in Key Topics in Conservation Biology 2 (eds. Macdonald, D. W. & Willis, K. J.) 127–142 (John Wiley & Sons, 2013).

  • Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).

    Article 

    Google Scholar 

  • Baillie, S. R., Wernham, C. V. & Clark, J. A. Development of the British and Irish ringing scheme and its role in conservation biology. Ringing Migr. 19, S5–S19 (1999).

    Article 

    Google Scholar 

  • Greenwood, J. J. D. Citizens, science and bird conservation. J. Ornithol. 148, S77–S124 (2007).

    Article 

    Google Scholar 

  • Horns, J. J., Adler, F. R. & Şekercioğlu, Ç. H. Using opportunistic citizen science data to estimate avian population trends. Biol. Conserv. 221, 151–159 (2018).

    Article 

    Google Scholar 

  • Ryan, R. L., Kaplan, R. & Grese, R. E. Predicting volunteer commitment in environmental stewardship programmes. J. Environ. Plan. Manag. 44, 629–648 (2001).

    Article 

    Google Scholar 

  • Maund, P. R. et al. What motivates the masses: Understanding why people contribute to conservation citizen science projects. Biol. Conserv. 246, 108587 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Martin, V. Y. & Greig, E. I. Young adults’ motivations to feed wild birds and influences on their potential participation in citizen science: An exploratory study. Biol. Conserv. 235, 295–307 (2019).

    Article 

    Google Scholar 

  • Cox, D. T. C. & Gaston, K. J. Human–nature interactions and the consequences and drivers of provisioning wildlife. Philos.Trans. R. Soc. B Biol. Sci. 373, 20170092 (2018).

    Article 

    Google Scholar 

  • Murray, M. H., Becker, D. J., Hall, R. J. & Hernandez, S. M. Wildlife health and supplemental feeding: A review and management recommendations. Biol. Conserv. 204, 163–174 (2016).

    Article 

    Google Scholar 

  • Rocha, G. & Quillfeldt, P. Effect of supplementary food on age ratios of European turtle doves (Streptopelia turtur L.). Anim. Biodivers. Conserv. 38, 11–21 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A harmonized dataset of sediment diatoms from hundreds of lakes in the northeastern United States

    Fission in a colonial marine invertebrate signifies unique life history strategies rather than being a demographic trait