Ecosystems and Human Well-being: Synthesis (Millennium Ecosystem Assessment, 2005).
Huang, J. et al. Dryland climate change: recent progress and challenges. Rev. Geophys. 55, 719–778 (2017).
Google Scholar
Fu, B. et al. The Global-DEP conceptual framework — research on dryland ecosystems to promote sustainability. Curr. Opin. Environ. Sustain. 48, 17–28 (2021).
Google Scholar
He, C. et al. Detecting global urban expansion over the last three decades using a fully convolutional network. Environ. Res. Lett. 14, 034008 (2019).
Google Scholar
Güneralp, B., Reba, M., Hales, B. U., Wentz, E. A. & Seto, K. C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: a global synthesis. Environ. Res. Lett. 15, 044015 (2020).
Google Scholar
McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 3, 16–24 (2019).
Google Scholar
Liu, X. et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 3, 564–570 (2020).
Google Scholar
Güneralp, B. & Seto, K. C. Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ. Res. Lett. 8, 014025 (2013).
Google Scholar
McDonald, R. I., Kareiva, P. & Forman, R. T. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).
Google Scholar
McDonald, R. I., Marcotullio, P. J. & Güneralp, B. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities (Springer, 2013).
van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2, 755–763 (2019).
Google Scholar
Sharp, R. et al. InVEST 3.2.0 User’s Guide (The Natural Capital Project, Stanford Univ., Univ. Minnesota, The Nature Conservancy and World Wildlife Fund, 2015).
Terrado, M. et al. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 540, 63–70 (2016).
Google Scholar
Bai, Y. et al. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 9, 3034 (2018).
Google Scholar
McDonald, R. I. et al. Urban effects, distance, and protected areas in an urbanizing world. Landsc. Urban Plan. 93, 63–75 (2009).
Google Scholar
Mirzabaev, A. et al. in Climate Change and Land (eds Shukla, P. R. et al.) 249–343 (IPCC, 2019).
Friis, C. & Nielsen, J. Telecoupling. Exploring Land-use Change in a Globalised World (Palgrave Macmillan, 2019).
Maestre, F. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).
Google Scholar
Leh, M. D. K., Matlock, M. D., Cummings, E. C. & Nalley, L. L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 165, 6–18 (2013).
Google Scholar
Xie, W., Huang, Q., He, C. & Zhao, X. Projecting the impacts of urban expansion on simultaneous losses of ecosystem services: a case study in Beijing, China. Ecol. Indic. 84, 183–193 (2018).
Google Scholar
Whitford, W. & Wade, E. L. Ecology of Desert Systems (Academic Press, 2002).
Brito, J. C. et al. Conservation biogeography of the Sahara‐Sahel: additional protected areas are needed to secure unique biodiversity. Divers. Distrib. 22, 371–384 (2016).
Google Scholar
Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).
Google Scholar
Salafsky, N. et al. A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conserv. Biol. 22, 897–911 (2008).
Google Scholar
Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).
Google Scholar
Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).
Google Scholar
Díaz, S. M. et al. The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy Makers (IPBES, 2019).
Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).
Google Scholar
Pautasso, M. Scale dependence of the correlation between human population presence and vertebrate and plant species richness. Ecol. Lett. 10, 16–24 (2007).
Google Scholar
Luck, G. W. A review of the relationships between human population density and biodiversity. Biol. Rev. Camb. Phil. Soc. 82, 607–645 (2007).
Google Scholar
McDonald, R. I., Güneralp, B., Huang, C.-W., Seto, K. C. & You, M. Conservation priorities to protect vertebrate endemics from global urban expansion. Biol. Conserv. 224, 290–299 (2018).
Google Scholar
The IUCN Red List of Threatened Species Version 2017-3 (IUCN, 2017); https://www.iucnredlist.org/resources/spatial-data-download
Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
Google Scholar
Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993 (2020).
Google Scholar
Guidelines for Geoconservation in Protected and Conserved Areas (IUCN, 2020).
Gao, J. How China will protect one-quarter of its land. Nature 569, 457 (2019).
Google Scholar
Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).
Google Scholar
Gao, B., Huang, Q., He, C., Sun, Z. & Zhang, D. How does sprawl differ across cities in China? A multi-scale investigation using nighttime light and census data. Landsc. Urban Plan. 148, 89–98 (2016).
Google Scholar
Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).
Google Scholar
Lambin, E. A. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).
Google Scholar
Arlidge, W. et al. A global mitigation hierarchy for nature conservation. Bioscience 68, 336–347 (2018).
Google Scholar
Moallemi, E. A., Kwakkel, J., de Haan, F. J. & Bryan, B. A. Exploratory modeling for analyzing coupled human-natural systems under uncertainty. Glob. Environ. Change 65, 102186 (2020).
Google Scholar
Luck, M. A., Jenerette, G. D., Wu, J. & Grimm, N. B. The urban funnel model and the spatially heterogeneous ecological footprint. Ecosystems 4, 782–796 (2001).
Google Scholar
Ramaswami, A. et al. A social‐ecological‐infrastructural systems framework for interdisciplinary study of sustainable city systems. J. Ind. Ecol. 16, 801–813 (2012).
Google Scholar
Boerema, A. et al. Soybean trade: balancing environmental and socio-economic impacts of an intercontinental market. PLoS ONE 11, e0155222 (2016).
Google Scholar
Garrett, R. D., Lambin, E. F. & Naylor, R. L. Land institutions and supply chain configurations as determinants of soybean planted area and yields in Brazil. Land Use Policy 31, 385–396 (2013).
Google Scholar
Friess, D. A., Rogers, K., Lovelock, C. E., Krauss, K. W. & Shi, S. The state of the world’s mangrove forests: past, present, and future. Annu. Rev. Environ. Resour. 44, 89–115 (2019).
Google Scholar
Ferreira, A. C. & Lacerda, L. D. Degradation and conservation of Brazilian mangroves, status and perspectives. Ocean Coast. Manage. 125, 38–46 (2016).
Google Scholar
Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl Acad. Sci. USA 113, 201510272 (2016).
García-Vega, D. & Newbold, T. Assessing the effects of land use on biodiversity in the world’s drylands and Mediterranean environments. Biodivers. Conserv. 29, 393–408 (2020).
Google Scholar
Martínez-Valderrama, J., Guirado, E. & Maestre, F. Desertifying deserts. Nat. Sustain. 3, 572–575 (2020).
Google Scholar
Maestre, F. et al. Biogeography of global drylands. New Phytol. 231, 540–558 (2021).
Google Scholar
United Nations Environment World Conservation Monitoring Centre. World dryland areas according to UNCCD and CBD definitions. https://resources.unep-wcmc.org/products/789fcac8959943ab9ed7a225e5316f08 (2022).
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).
Google Scholar
Goldewijk, K. K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).
Google Scholar
Revision of World Urbanization Prospects (United Nations, 2018); https://esa.un.org/unpd/wup
Land Cover CCI—Product User Guide Version 2.0. (European Space Agency, 2017); http://maps.elie.ucl.ac.be/CCI/viewer/index.php
Grekousis, G., Mountrakis, G. & Kavouras, M. An overview of 21 global and 43 regional land-cover mapping products. Int. J. Remote Sens. 36, 5309–5335 (2015).
Google Scholar
Xu, X., Jain, A. K. & Calvin, K. V. Quantifying the biophysical and socioeconomic drivers of changes in forest and agricultural land in South and Southeast Asia. Glob. Change Biol. 25, 2137–2151 (2019).
Google Scholar
Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 236, 111510 (2020).
Google Scholar
Huang, Q. et al. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environ. Res. Lett. 15, 084037 (2020).
Google Scholar
He, C., Liu, Z., Tian, J. & Ma, Q. Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective. Glob. Change Biol. 20, 2886–2902 (2014).
Google Scholar
Di Febbraro, M. et al. Expert-based and correlative models to map habitat quality: which gives better support to conservation planning? Glob. Ecol. Conserv. 16, e00513 (2018).
Google Scholar
Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 27, 93–115 (2010).
Google Scholar
Source: Ecology - nature.com