Animal husbandry
Carukia barnesi polyps were available in culture from the James Cook University Aquarium, spawned from medusa originally collected near Double Island, North Queensland, Australia (16° 43.5′ S, 145° 41.0′ E) in 2014 and 20158. Populations exponentially increase through asexual reproduction8. Detached buds and swimming polyps were collected from the main culture, and transferred into 6-well tissue culture plates in natural filtered seawater. Plates were maintained in darkness to inhibit algae growth at 27 °C in a constant temperature cabinet. Buds and swimming polyps were left to develop and attach to well bottoms, at which point they were then fed freshly hatched Artemia nauplii and water changed 2–3 times per week. Lids remained attached to tissue culture plates to negate water evaporation and maintain a stable salinity. Polyps were maintained in this way for a minimum of 4 months before experiments began, with all individuals matured with the ability to asexually reproduce further buds. To preserve water quality15 polyps were starved for two days prior to experiment start and were not fed for the duration of the trials. One day prior to the experiment start, all immature buds and polyps were removed from wells, leaving approximately 5–10 mature polyps attached to the substrate for analysis.
Preparation of reagents
Reagents
Six chemicals were trialed in the current study to induce metamorphosis in C. barnesi polyps. Four indole containing compounds were chosen that have previously been trialed with other cubozoan species: 5-methoxy-2-methyl-3-indoleacetic acid, 5-methoxyindole-2-carboxylic acid, 2-methylindole16 and 5-Methoxy-2-methylindole15,16. Along with the retinoic X receptor 9-cis-retinoic acid and lugols solution.
Indole compound treatments
Chemical concentrations of indoles documented in the literature were used to conduct preliminary concentration tests. Fifty mM stock solutions were prepared with 100% ethanol, which was diluted with filtered seawater to the desired experimental concentrations: 50 μM16, 20 μM and 5 μM15. Due to high fatality rates at all of these concentrations when used in this study on C. barnesi, all concentrations were diluted. Fifty mM stock solutions of 5-methoxy-2-methyl-3-indoleacetic acid, 5-methoxyindole-2-carboxylic acid, 2-methylindole and 5-Methoxy-2-methylindole were prepared with 50% ethanol (50% Milli-Q® water) and stored at − 20 °C. Fifty mM stock solutions were diluted with filtered seawater to the experimental concentrations of 5 μM, 1 μM, 0.5 μM, 0.1 μM and 0.05 μM. The carrier solution of 50% ethanol (50% Milli-Q® water) was diluted to the equivalent of the experimental concentrations listed above for use as a control, and incorporated into data as concentration 0. Seventeen ml of solution was added to polyps to fill each well of a 6-well plate.
Iodine treatment (lugols solution)
Aqueous iodine in the form of Lugols solution (0.37% iodine and 0.74% potassium iodide (sigma product information)) was prepared with equivalent concentrations of moles iodine/iodide: 1.5 μM, 3 μM, 6 μM, 12 μM and 24 μM. Filtered seawater only was used a control for this treatment and incorporated into data as concentration 0. 17 ml of solution was added to polyps to fill each well of a 6-well plate.
Retinoid treatment
To reduce ethanol associated fatality of polyps 0.015% ethanol in Milli-Q® water was used to prepare a 1 mM stock solution of 9-cis-Retinoic acid. The 1 mM stock solution was diluted with filtered seawater to the experimental concentrations of 5 μM, 1 μM, 0.5 μM, 0.1 μM and 0.05 μM. The carrier solution of 0.015% ethanol (Milli-Q® water) was diluted to the equivalent of the experimental concentrations listed above for use as a control, and incorporated into data as concentration 0. 17 ml of solution was added to polyps to fill each well of a 6-well plate.
Metamorphosis trials
Primary trials
Experimental concentrations of reagents were added to C. barnesi polyps growing in the wells of sterile 6-well tissue culture plates. One plate was used per chemical, per concentration, in which five wells functioned as replicates containing the chemical being trialed, whilst the sixth well contained only the control medium. Five concentrations were run for each of six chemicals; 30 plates in total.
The filtered seawater the polyps were growing in was exchanged for the experimental chemical on day 0, and was not changed for the duration of the trial. Lids remained attached to tissue culture plates to negate water evaporation and hence salinity changes.
Polyps in each well were photographed each day through a dissection microscope over a period of 34 days. Results were then recorded from the photographs, categorised (Fig. 6) as the number of polyps which displayed:
Tentacle migration: one of the key signs of metamorphosis in this species, polyp tentacles merge, migrating to form four distinct corners in a square shape8.
Detached medusa: a medusa formed and detached from the polyp, recorded regardless of health.
Mobile detached medusa: a healthy medusa formed and detached from the polyp, with the ability to swim.
Polyp survival: this was then used to calculate the number of polyps which survived the treatment which did not metamorphose.
Optimisation trial
The optimal chemical and concentration was then deduced by choosing the combination that produced the largest percentage of healthy detached medusa, in this case 5-methoxy-2-methylindole at 1 μM. A final trial was then run with this to determine if length of chemical exposure could optimize healthy medusa yield. Three replicates of a minimum of five polyps were used per treatment, in which in 1 μM of 5-methoxy-2-methylindole (in seawater) was added to polyps for 24, 48, 72, 96 and 120 h, before the solution was changed to fresh seawater. A sea water only control was also run. The total number of healthy detached medusa were recorded each day.
Data analysis
All statistical analysis was conducted in IBM SPSS Statistics Ver28. Graphs were produced in Microsoft Excel 2016 and OriginPro Graphing and Analysis 2021.
Primary trials
The effect of chemical, concentration and time was analysed using a repeated measures three-way ANOVA for four sets of data gathered during the metamorphosis process: percentage of polyps to display tentacle migration, percentage of polyps to have medusa detach, percentage of polyps to have healthy swimming medusa detach, percentage survival of polyps that did not metamorphose. Percentage data was arcsine square root transformed prior to analysis. Mauchly’s Test of Sphericity indicated that the assumption of sphericity had been violated on all four sets of data and therefore, a Greenhouse–Geisser correction was used.
Optimisation trial
Differences in the mean percentage of healthy medusa produced at different exposure times was analysed using ANOVA. Differences between means were elucidated using a Post hoc Tukey pairwise comparison test (Tukey HSD alpha 0.05).
Source: Ecology - nature.com