Danovaro, R., Snelgrove, P. V. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29, 465–475 (2014).
Google Scholar
Smith, C. R., Hoover, D. J. & Doan, S. E. Phytodetritus at the abyssal seafloor across 10° of latitude in the central equatorial Pacific. Oceanogr. Lit. Rev. 4, 318 (1997).
Buesseler, K. O. et al. Revisiting carbon flux through the ocean’s twilight zone. Science 316, 567–570 (2007).
Google Scholar
Rex, M. A. et al. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar. Ecol. Prog. Ser. 317, 1–8 (2006).
Google Scholar
Clough, L. M., Renaud, P. E. & Ambrose, W. G. Jr. Impacts of water depth, sediment pigment concentration, and benthic macrofaunal biomass on sediment oxygen demand in the western Arctic Ocean. Can. J. Fish. Aquat. Sci. 62, 1756–1765 (2005).
Google Scholar
Gorska, B., Soltwedel, T., Schewe, I. & Wlodarska-Kowalczuk, M. Bathymetric trends in biomass size spectra, carbon demand, and production of Arctic benthos (76–5561 m, Fram Strait). Prog. Oceanogr. 186, 102370 (2020).
Stratmann, T. et al. The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities. Sci. Data 7, 206 (2020).
Google Scholar
Glud, R. N. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4, 243–289 (2008).
Zeppilli, D. et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar. Biodivers. 48, 35–71 (2018).
Rosli, N., Leduc, D., Rowden, A. A. & Probert, P. K. Review of recent trends in ecological studies of deep-sea meiofauna, with focus on patterns and processes at small to regional spatial scales. Mar. Biodivers. 48, 13–34 (2018).
Schratzberger, M. & Ingels, J. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. 502, 12–25 (2018).
Berg, P., Rysgaard, S., Funch, P. & Sejr, M. K. Effects of bioturbation on solutes and solids in marine sediments. Aquat. Microb. Ecol. 26, 81–94 (2001).
Aller, R. C. & Aller, J. Y. Meiofauna and solute transport in marine muds. Limnol. Oceanogr. 37, 1018–1033 (1992).
Google Scholar
Leduc, D. et al. Comparison between infaunal communities of the deep floor and edge of the Tonga Trench: possible effects of differences in organic matter supply. Deep Sea Res. Part Oceanogr. Res. Pap. 116, 264–275 (2016).
Google Scholar
Schmidt, C. & Martínez Arbizu, P. Unexpectedly higher metazoan meiofauna abundances in the Kuril-Kamchatka Trench compared to the adjacent abyssal plains. Deep Sea Res. Part II Top. Stud. Oceanogr. 111, 60–75 (2015).
Google Scholar
Danovaro, R., Gambi, C. & DellaCroce, N. Meiofauna hotspot in the Atacama Trench, eastern south Pacific Ocean. Deep Sea Res. Part Oceanogr. Res. Pap. 49, 843–857 (2002).
Google Scholar
Ichino, M. C. et al. The distribution of benthic biomass in hadal trenches: a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep Sea Res. Part Oceanogr. Res. Pap. 100, 21–33 (2015).
Google Scholar
Shirayama, Y. The abundance of deep-sea meiobenthos in the western pacific in relation to environmental-factors. Oceanol. Acta 7, 113–121 (1984).
Leduc, D. & Rowden, A. A. Nematode communities in sediments of the Kermadec Trench, Southwest Pacific Ocean. Deep Sea Res. Part Oceanogr. Res. Pap. 134, 23–31 (2018).
Google Scholar
Brandt, A., Brix, S., Riehl, T. & Malyutina, M. Biodiversity and biogeography of the abyssal and hadal Kuril-Kamchatka trench and adjacent NW Pacific deep-sea regions. Prog. Oceanogr. 181, 102232 (2020).
Schmidt, C., Escobar Wolf, K., Lins, L., Martínez Arbizu, P. & Brandt, A. Meiofauna abundance and community patterns along a transatlantic transect in the Vema Fracture Zone and in the hadal zone of the Puerto Rico trench. Deep Sea Res. Part II Top. Stud. Oceanogr. 148, 223–235 (2018).
Google Scholar
Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M. & Priede, I. G. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol. Evol. 25, 190–197 (2010).
Google Scholar
Jamieson, A. J. Ecology of deep oceans: hadal trenches. eLS https://doi.org/10.1002/9780470015902.a0023606 (2011).
Google Scholar
Stewart, H. A. & Jamieson, A. J. Habitat heterogeneity of hadal trenches: Considerations and implications for future studies. Prog. Oceanogr. 161, 47–65 (2018).
Google Scholar
Wenzhöfer, F. et al. Benthic carbon mineralization in hadal trenches: Assessment by in situ O2 microprofile measurements. Deep Sea Res. Part Oceanogr Res Pap. 116, 276–286 (2016).
Google Scholar
Glud, R. N. et al. Hadal trenches are dynamic hotspots for early diagenesis in the deep sea. Commun. Earth Environ. 2, 1–8 (2021).
Google Scholar
Glud, R. N. et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6, 284–288 (2013).
Google Scholar
Xu, Y. et al. Distribution, source, and burial of sedimentary organic carbon in Kermadec and Atacama Trenches. J. Geophys. Res. Biogeosciences 126, e2020JG006189 (2021).
Google Scholar
Itou, M., Matsumura, I. & Noriki, S. A large flux of particulate matter in the deep Japan Trench observed just after the 1994 Sanriku-Oki earthquake. Deep Sea Res. Part Oceanogr. Res. Pap. 47, 1987–1998 (2000).
Google Scholar
Oguri, K. et al. Hadal disturbance in the Japan Trench induced by the 2011 Tohoku-Oki Earthquake. Sci. Rep. 3, 1–6 (2013).
Luo, M. et al. Benthic carbon mineralization in hadal trenches: insights from in situ determination of benthic oxygen consumption. Geophys. Res. Lett. 45, 2752–2760 (2018).
Google Scholar
Itoh, M. et al. Bathymetric patterns of meiofaunal abundance and biomass associated with the Kuril and Ryukyu trenches, western North Pacific Ocean. Deep Sea Res. Part Oceanogr. Res. Pap. 58, 86–97 (2011).
Google Scholar
Tietjen, J. H., Deming, J. W., Rowe, G. T., Macko, S. & Wilke, R. J. Meiobenthos of the hatteras abyssal plain and Puerto Rico trench: abundance, biomass and associations with bacteria and particulate fluxes. Deep Sea Res. Part Oceanogr. Res. Pap. 36, 1567–1577 (1989).
Google Scholar
Richardson, M. D., Briggs, K. B., Bowles, F. A. & Tietjen, J. H. A depauperate benthic assemblage from the nutrient-poor sediments of the Puerto Rico Trench. Deep Sea Res. Part Oceanogr. Res. Pap. 42, 351–364 (1995).
Google Scholar
Tietjen, J. H. Ecology of deep-sea nematodes from the Puerto Rico trench area and Hatteras Abyssal plain. Deep Sea Res. Part Oceanogr. Res. Pap. 36, 1579–1594 (1989).
Google Scholar
Shirayama, Y. & Kojima, S. Abundance of deep-sea meiobenthos off Sanriku, Northeastern Japan. J. Oceanogr. 50, 109–117 (1994).
Ingels, J. et al. Preferred use of bacteria over phytoplankton by deep-sea nematodes in polar regions. Mar. Ecol. Prog. Ser. 406, 121–133 (2010).
Google Scholar
Guilini, K., Oevelen, D. V., Soetaert, K., Middelburg, J. J. & Vanreusela, A. Nutritional importance of benthic bacteria for deep-sea nematodes from the Arctic ice margin: Results of an isotope tracer experiment. Limnol. Oceanogr. 55, 1977–1989 (2010).
Google Scholar
Moens, T., Verbeeck, L., de Maeyer, A., Swings, J. & Vincx, M. Selective attraction of marine bacterivorous nematodes to their bacterial food. Mar. Ecol. Prog. Ser. 176, 165–178 (1999).
Google Scholar
Schmidt, C., Sattarova, V. V., Katrynski, L. & Arbizu, P. M. New insights from the deep: Meiofauna in the Kuril-Kamchatka Trench and adjacent abyssal plain. Prog. Oceanogr. 173, 192–207 (2019).
Google Scholar
Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).
Google Scholar
Neira, C., Sellanes, J., Levin, L. A. & Arntz, W. E. Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep Sea Res. Part Oceanogr. Res. Pap. 48, 2453–2472 (2001).
Google Scholar
Soltwedel, T. Metazoan meiobenthos along continental margins: a review. Prog. Oceanogr. 46, 59–84 (2000).
Google Scholar
Rowe, G. T., Sibuet, M., Deming, J., Tietjen, J. & Khripounoff, A. Organic carbon turnover time in deep-sea benthos. Prog. Oceanogr. 24, 141–160 (1990).
Google Scholar
Tselepides, A. et al. Organic matter composition of the continental shelf and bathyal sediments of the Cretan Sea (NE Mediterranean). Prog. Oceanogr. 46, 311–344 (2000).
Google Scholar
Hansen, J. & Josefson, A. Pools of chlorophyll and live planktonic diatoms in aphotic marine sediments. Mar. Biol. 139, 289–299 (2001).
Google Scholar
Hargraves, P. E. & French, S. Survival characteristics of marine diatom resting spores. in JOURNAL OF PHYCOLOGY vol. 11 6–6 (PHYCOLOGICAL SOC AMER INC 810 EAST 10TH ST, LAWRENCE, KS 66044, 1975).
Schauberger, C. et al. Spatial variability of prokaryotic and viral abundances in the Kermadec and Atacama Trench regions. Limnol. Oceanogr. 66(6), 2095–2109 (2021).
Google Scholar
van Oevelen, D. et al. Carbon flows in the benthic food web at the deep-sea observatory HAUSGARTEN (Fram Strait). Deep Sea Res. Part Oceanogr. Res. Pap. 58, 1069–1083 (2011).
Google Scholar
Heip, C. H. R. et al. The role of the benthic biota in sedimentary metabolism and sediment-water exchange processes in the Goban Spur area (NE Atlantic). Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 3223–3243 (2001).
Google Scholar
Rowe, G. T. et al. Comparative biomass structure and estimated carbon flow in food webs in the deep Gulf of Mexico. Deep Sea Res. Part II Top. Stud. Oceanogr. 55, 2699–2711 (2008).
Google Scholar
Baguley, J. G., Montagna, P. A., Hyde, L. J. & Rowe, G. T. Metazoan meiofauna biomass, grazing, and weight-dependent respiration in the Northern Gulf of Mexico deep sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 55, 2607–2616 (2008).
Google Scholar
Maciute, A. et al. A microsensor-based method for measuring respiration of individual nematodes. Methods Ecol. Evol. 12(10), 1841–1847. https://doi.org/10.1111/2041-210X.13674 (2021).
Google Scholar
Montagna, P. A. In situ measurement of meiobenthic grazing rates on sediment bacteria and edaphic diatoms. (1984).
Danovaro, R. Detritus-Bacteria-Meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean. Mar. Biol. 127, 1–13 (1996).
Google Scholar
Pape, E., van Oevelen, D., Moodley, L., Soetaert, K. & Vanreusel, A. Nematode feeding strategies and the fate of dissolved organic matter carbon in different deep-sea sedimentary environments. Deep Sea Res. Part Oceanogr. Res. Pap. 80, 94–110 (2013).
Google Scholar
Wieser, W. Beziehungen zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden mari- nen Nematoden. Ark. För Zool. 2, 439–484 (1953).
Moens, T. & Vincx, M. Observations on the feeding ecology of estuarine nematodes. J. Mar. Biol. Assoc. U. K. 77, 211–227 (1997).
Moens, T. et al. Carbon sources of Antarctic nematodes as revealed by natural carbon isotope ratios and a pulse-chase experiment. Polar Biol. 31, 1–13 (2007).
Ingels, J., Kiriakoulakis, K., Wolff, G. A. & Vanreusel, A. Nematode diversity and its relation to the quantity and quality of sedimentary organic matter in the deep Nazaré Canyon, Western Iberian Margin. Deep Sea Res. Part Oceanogr. Res. Pap. 56, 1521–1539 (2009).
Google Scholar
Gambi, C., Vanreusel, A. & Danovaro, R. Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean). Deep Sea Res. Part Oceanogr. Res. Pap. 50, 103–117 (2003).
Google Scholar
Vanhove, S., Vermeeren, H. & Vanreusel, A. Meiofauna towards the South Sandwich Trench (750–6300 m), focus on nematodes. Deep Sea Res. Part II Top Stud. Oceanogr. 51, 1665–1687 (2004).
Google Scholar
Jumars, P. A. & Hessler, R. R. Hadal community structure: implications from the Aleutian Trench. J. Mar. Res. 34, 547–560 (1976).
Kim, D.-S. & Min, W.-G. Meiobenthic communities in extreme deep-sea environment. Korean J. Fish. Aquat. Sci. 39, 203–213 (2006).
Wenzhöfer, F. The Expedition SO261 of the Research Vessel SONNE to the Atacama Trench in the Pacific Ocean in 2018. Berichte Zur Polar- Meeresforsch. Rep. Polar Mar. Res. 729, 111. https://doi.org/10.2312/BzPM_0729_2019 (2019).
Google Scholar
Scholl, D. W., Christensen, M. N., von Huene, R. & Marlow, M. S. Peru-Chile trench sediments and sea-floor spreading. Geol. Soc. Am. Bull. 81, 1339–1360 (1970).
Google Scholar
Fisher, R. L. & Raitt, R. W. Topography and structure of the Peru-Chile trench. In Deep Sea Research and Oceanographic Abstracts vol. 9 423–443 (Elsevier, 1962).
Bandy, O. L. & Rodolfo, K. S. Distribution of foraminifera and sediments, Peru-Chile Trench area. In Deep Sea Research and Oceanographic Abstracts vol. 11 817–837 (Elsevier, 1964).
Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans https://doi.org/10.1029/2006JC003706 (2007).
Google Scholar
Carrie, J., Sanei, H. & Stern, G. Standardisation of Rock-Eval pyrolysis for the analysis of recent sediments and soils. Org. Geochem. 46, 38–53 (2012).
Google Scholar
Shuman, F. R. & Lorenzen, C. J. Quantitative degradation of chlorophyll by a marine herbivore 1. Limnol. Oceanogr. 20, 580–586 (1975).
Google Scholar
Glud, R. N. et al. In situ microscale variation in distribution and consumption of 2: a case study from a deep ocean margin sediment (Sagami Bay, Japan). Limnol. Oceanogr. 54, 1–12 (2009).
Google Scholar
Revsbech, N. P. An oxygen microelectrode with a guard cathode. Linnol. Oceanogr. 34, 474–487 (1989).
Google Scholar
Berg, P., Risgaard-Petersen, N. & Rysgaard, S. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998).
Google Scholar
Feller, R. J. & Warwick, R. M. Energetics. in Feller, R.J. and Warwick, R.M. <https://researchrepository.murdoch.edu.au/view/author/Warwick,Richard.html> (1988) Energetics. In: Higgins, R.P. and Thiel, H., (eds.) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, D.C, pp. 181–196. (eds. Higgins, R. P. & Thiel, H.) 181–196 (Smithsonian Institution Press, 1988).
Mahaut, M.-L., Sibuet, M. & Shirayama, Y. Weight-dependent respiration rates in deep-sea organisms. Deep Sea Res. Part Oceanogr. Res. Pap. 42, 1575–1582 (1995).
Google Scholar
Source: Ecology - nature.com