in

Molecular phylogenies map to biogeography better than morphological ones

  • Harvey, P. H. & Pagel, M. D. The comparative method in evolutionary biology. Vol. 239 (Oxford University Press, 1991).

  • Oyston, J. W., Hughes, M., Wagner, P. J., Gerber, S. & Wills, M. A. What limits the morphological disparity of clades? Interface Focus 5, 0042 (2015).

    Article 

    Google Scholar 

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Webb, C. O. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Naturalist 156, 145–155 (2000).

    Article 

    Google Scholar 

  • Purvis, A., Gittleman, J. L. & Brooks, T. Phylogeny and conservation. (Cambridge University Press, 2005).

  • Page, R. D. M. Parallel phylogenies: reconstructing the history of host-parasite assemblages. Cladistics 10, 155–173 (1994).

    Article 

    Google Scholar 

  • Weaver, S. C. & Vasilakis, N. Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect., Genet. Evolution 9, 523–540 (2009).

    CAS 
    Article 

    Google Scholar 

  • Tassy, P. Trees before and after Darwin. J. Zool. Syst. Evolut. Res. 49, 89–101 (2011).

    Article 

    Google Scholar 

  • Heather, J. M. & Chain, B. The sequence of sequencers: The history of sequencing DNA. Genomics 107, 1–8 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pyron, R. A. Post-molecular systematics and the future of phylogenetics. Trends Ecol. Evolution 30, 384–389 (2015).

    Article 

    Google Scholar 

  • Sansom, R. S. & Wills, M. A. Differences between hard and soft phylogenetic data. Proc. R. Soc. B: Biol. Sci. 284, 20172150 (2017).

    Article 

    Google Scholar 

  • Scotland, R. W., Olmstead, R. G. & Bennett, J. R. Phylogeny reconstruction: the role of morphology. Syst. Biol. 52, 539–548 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Regier, J. C. et al. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463, 1079–1083 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Callender-Crowe, L. M. & Sansom, R. S. Osteological characters of birds and reptiles are more congruent with molecular phylogenies than soft characters are. Zool. J. Linn. Soc. 194, 1–13 (2022).

    Article 

    Google Scholar 

  • Wahlberg, N. et al. Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc. R. Soc. B: Biol. Sci. 272, 1577–1586 (2005).

    CAS 
    Article 

    Google Scholar 

  • He, L. et al. A molecular phylogeny of selligueoid ferns (Polypodiaceae): Implications for a natural delimitation despite homoplasy and rapid radiation. Taxon 67, 237–249 (2018).

    Article 

    Google Scholar 

  • Fernández, R., Edgecombe, G. D. & Giribet, G. Phylogenomics illuminates the backbone of the Myriapoda Tree of Life and reconciles morphological and molecular phylogenies. Sci. Rep. 8, 1–7 (2018).

    Google Scholar 

  • Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Asher, R. J., Bennett, N. & Lehmann, T. The new framework for understanding placental mammal evolution. BioEssays 31, 853–864 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shoshani, J. & McKenna, M. C. Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Mol. Phylogenetics Evolution 9, 572–584 (1998).

    CAS 
    Article 

    Google Scholar 

  • Beck, R. M. D. & Baillie, C. Improvements in the fossil record may largely resolve current conflicts between morphological and molecular estimates of mammal phylogeny. Proc. R. Soc. B: Biol. Sci. 285, 20181632 (2018).

    Article 

    Google Scholar 

  • Zou, Z. T. & Zhang, J. Z. Morphological and molecular convergences in mammalian phylogenetics. Nat. Commun. 7, 1–9 (2016).

    Google Scholar 

  • Hillis, D. M. Molecular versus morphological approaches to systematics. Annu. Rev. Ecol. Syst. 18, 23–42 (1987).

    Article 

    Google Scholar 

  • Thompson, N. Alfred Russell Wallace Contributions to the theory of Natural Selection, 1870, and Charles Darwin and Alfred Wallace, ‘On the Tendency of Species to form Varieties’ (Papers presented to the Linnean Society 30th June 1858). (Routledge, 2004).

  • Croizat, L. Panbiogeography; or an introductory synthesis of zoogeography, phytogeography, and geology, with notes on evolution, systematics, ecology, anthropology, etc., Vol. 1, 2a & 2b (Published by the author, Caracas., 1958).

  • Means, J. C. & Marek, P. E. Is geography an accurate predictor of evolutionary history in the millipede family Xystodesmidae? PeerJ 5, e3854 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wills, M. A., Barrett, P. M. & Heathcote, J. F. The modified gap excess ratio (GER*) and the stratigraphic congruence of dinosaur phylogenies. Syst. Biol. 57, 891–904 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Fisher, D. C. Stratocladistics: integrating temporal data and character data in phylogenetic inference. Annu. Rev. Ecol., Evolution Syst. 39, 365–385 (2008).

    Article 

    Google Scholar 

  • Lazarus, D. B. & Prothero, D. R. The role of stratigraphic and morphologic data in phylogeny. J. Paleontol. 58, 163–172 (1984).

    Google Scholar 

  • Camerini, J. R. Evolution, biogeography, and maps: an early history of Wallace’s Line. Isis 84, 700–727 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Upchurch, P., Hunn, C. A. & Norman, D. B. An analysis of dinosaurian biogeography: evidence for the existence of vicariance and dispersal patterns caused by geological events. Proc. R. Soc. B: Biol. Sci. 269, 613–621 (2002).

    Article 

    Google Scholar 

  • Ferreira, G. S., Bronzati, M., Langer, M. C. & Sterli, J. Phylogeny, biogeography and diversification patterns of side-necked turtles (Testudines: Pleurodira). R. Soc. Open Sci. 5, 171773 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ronquist, F. & Sanmartín, I. Phylogenetic methods in biogeography. Annu. Rev. Ecol., Evolution, Syst. 42, 441–464 (2011).

    Article 

    Google Scholar 

  • IUCN. The IUCN Red List of Threatened Species. Version 2019-2., https://www.iucnredlist.org (2019).

  • GBIF.org. GBIF Home Page, https://www.gbif.org/ (2019).

  • Uetz, P., Freed, P., Aguilar, R. & Hošek, J. The reptile database., http://www.reptiledatabase.org (2019).

  • Archie, J. W. Homoplasy excess ratios: new indices for measuring levels of homoplasy in phylogenetic systematics and a critique of the consistency index. Syst. Zool. 38, 253–269 (1989).

    Article 

    Google Scholar 

  • Wilkinson, M. On phylogenetic relationships within Dendrotriton (Amphibia: Caudata: Plethodontidae) is there sufficient evidence? Herpetological J. 7, 55–65 (1997).

    Google Scholar 

  • O’Connor, A. & Wills, M. A. Measuring stratigraphic congruence across trees, higher taxa, and time. Syst. Biol. 65, 792–811 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Colless, D. H. Review of phylogenetics: the theory and practice of phylogenetic systematics. Syst. Zool. 31, 100–104 (1982).

    Article 

    Google Scholar 

  • Lartillot, N. & Philippe, H. Improvement of molecular phylogenetic inference and the phylogeny of Bilateria. Philos. Trans. R. Soc. B: Biol. Sci. 363, 1463–1472 (2008).

    Article 

    Google Scholar 

  • Sansom, R. S., Choate, P. G., Keating, J. N. & Randle, E. Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees. Biol. Lett. 14, 20180263 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rosa, B. B., Melo, G. A. & Barbeitos, M. S. Homoplasy-based partitioning outperforms alternatives in Bayesian analysis of discrete morphological data. Syst. Biol. 68, 657–671 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Lucena, D. A. & Almeida, E. A. Morphology and Bayesian tip-dating recover deep Cretaceous-age divergences among major chrysidid lineages (Hymenoptera: Chrysididae). Zool. J. Linn. Soc. 194, 36–79 (2022).

    Article 

    Google Scholar 

  • O’Reilly, J. E. et al. Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biol. Lett. 12, 20160081 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smith, M. R. Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets. Biol. Lett. 15, 20180632 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wiens, J. The role of morphological data in phylogeny reconstruction. Syst. Biol. 53, 653–661 (2004).

    PubMed 
    Article 

    Google Scholar 

  • O’Leary, M. A. & Kaufman, S. G. MorphoBank 3.0: Web application for morphological phylogenetics and taxonomy., http://www.morphobank.org (2012).

  • de Queiroz, A. & Gatesy, J. The supermatrix approach to systematics. Trends Ecol. Evolution 22, 34–41 (2007).

    Article 

    Google Scholar 

  • Wilkinson, M. A comparison of two methods of character construction. Cladistics 11, 297–308 (1995).

    Article 

    Google Scholar 

  • Brazeau, M. D. Problematic character coding methods in morphology and their effects. Biol. J. Linn. Soc. 104, 489–498 (2011).

    Article 

    Google Scholar 

  • Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • O’Reilly, J. E., Puttick, M. N., Pisani, D. & Donoghue, P. C. Probabilistic methods surpass parsimony when assessing clade support in phylogenetic analyses of discrete morphological data. Palaeontology 61, 105–118 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Keating, J. N., Sansom, R. S., Sutton, M. D., Knight, C. G. & Garwood, R. J. Morphological phylogenetics evaluated using novel evolutionary simulations. Syst. Biol. 69, 897–912 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Makarenkov, V. et al. Weighted bootstrapping: a correction method for assessing the robustness of phylogenetic trees. BMC Evolut. Biol. 10, 1–16 (2010).

    Article 
    CAS 

    Google Scholar 

  • Stayton, C. T. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 69, 2140–2153 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Sattler, R. Homology – a continuing challenge. Syst. Bot. 9, 382–394 (1984).

    Article 

    Google Scholar 

  • Jenner, R. A. & Schram, F. R. The grand game of metazoan phylogeny: rules and strategies. Biol. Rev. 74, 121–142 (1999).

    Article 

    Google Scholar 

  • Pisani, D. & Wilkinson, M. Matrix representation with parsimony, taxonomic congruence, and total evidence. Syst. Biol. 51, 151–155 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Arcila, D. et al. Testing the utility of alternative metrics of branch support to address the ancient evolutionary radiation of tunas, stromateoids, and allies (Teleostei: Pelagiaria). Syst. Biol. 70, 1123–1144 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Felsenstein, J. Phylogenies and the comparative method. Am. Naturalist 125, 1–15 (1985).

    Article 

    Google Scholar 

  • Bremer, K. Branch support and tree stability. Cladistics 10, 295–304 (1994).

    Article 

    Google Scholar 

  • Johnson, W. E. et al. The late Miocene radiation of modern Felidae: a genetic assessment. Science 311, 73–77 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Van der Made, J. Biogeography and climatic change as a context to human dispersal out of Africa and within Eurasia. Quat. Sci. Rev. 30, 1353–1367 (2011).

    Article 

    Google Scholar 

  • May, F., Rosenbaum, B., Schurr, F. M. & Chase, J. M. The geometry of habitat fragmentation: Effects of species distribution patterns on extinction risk due to habitat conversion. Ecol. Evolution 9, 2775–2790 (2019).

    Article 

    Google Scholar 

  • Swofford, D. L. et al. Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst. Biol. 50, 525–539 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jaeger, J. J. & Martin, M. African marsupials – vicariance or dispersion? Nature 312, 379–379 (1984).

    Article 

    Google Scholar 

  • Smith, B. T. et al. The drivers of tropical speciation. Nature 515, 406–409 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Simkanin, C. et al. Exploring potential establishment of marine rafting species after transoceanic long-distance dispersal. Glob. Ecol. Biogeogr. 28, 588–600 (2019).

    Article 

    Google Scholar 

  • Raxworthy, C. J., Forstner, M. R. J. & Nussbaum, R. A. Chameleon radiation by oceanic dispersal. Nature 415, 784–787 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stehli, F. G. & Webb, S. D. The great American biotic interchange., Vol. 4 (Springer Science & Business Media, 2013).

  • Ronquist, F. Dispersal-vicariance analysis: A new approach to the quantification of historical biogeography. Syst. Biol. 46, 195–203 (1997).

    Article 

    Google Scholar 

  • Ricklefs, R. E. & Bermingham, E. The concept of the taxon cycle in biogeography. Glob. Ecol. Biogeogr. 11, 353–361 (2002).

    Article 

    Google Scholar 

  • Ma, H. An analysis of the equilibrium of migration models for biogeography-based optimization. Inf. Sci. 180, 3444–3464 (2010).

    Article 

    Google Scholar 

  • Yiming, L., Niemelä, J. & Dianmo, L. Nested distribution of amphibians in the Zhoushan archipelago, China: can selective extinction cause nested subsets of species? Oecologia 113, 557–564 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Crisci, J. V., Katinas, L. & Posadas, P. Historical Biogeography: An Introduction. (Harvard University Press, 2003).

  • Chen, R. et al. Adaptive innovation of green plants by horizontal gene transfer. Biotechnol. Adv. 46, 107671 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schönknecht, G., Weber, A. P. & Lercher, M. J. Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution. BioEssays 36, 9–20 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Smith, A. B. Echinoderm phylogeny: morphology and molecules approach accord. Trends Ecol. Evolution 7, 224–229 (1992).

    CAS 
    Article 

    Google Scholar 

  • Bateman, R. M., Hilton, J. & Rudall, P. J. Morphological and molecular phylogenetic context of the angiosperms: contrasting the ‘top-down’ and ‘bottom-up’ approaches used to infer the likely characteristics of the first flowers. J. Exp. Bot. 57, 3471–3503 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. 115, E2274–E2283 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Richter, S. The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Org. Diversity Evolution 2, 217–237 (2002).

    Article 

    Google Scholar 

  • Dunn, C. W. et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452, 745–749 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Caravas, J. & Friedrich, M. Of mites and millipedes: recent progress in resolving the base of the arthropod tree. BioEssays 32, 488–495 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Howard, R. J. et al. The Ediacaran origin of Ecdysozoa: integrating fossil and phylogenomic data. J. Geol. Soc. https://doi.org/10.1144/jgs2021-107 (2022).

  • Newman, M. E. J. A model of mass extinction. J. Theor. Biol. 189, 235–252 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cobbett, A., Wilkinson, M. & Wills, M. A. Fossils impact as hard as living taxa in parsimony analyses of morphology. Syst. Biol. 56, 753–766 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Ruta, M., Krieger, J., Angielczyk, K. & Wills, M. A. The evolution of the tetrapod humerus: morphometrics, disparity, and evolutionary rates. Earth Environ. Sci. Trans. R. Soc. Edinb. 109, 351–369 (2018).

    Google Scholar 

  • Puttick, M. N., Thomas, G. H. & Benton, M. J. High rates of evolution preceded the origins of birds. Evolution 68, 1497–1510 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sansom, R. S. & Wills, M. A. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees. Sci. Rep. 3, 1–5 (2013).

    Article 

    Google Scholar 

  • Brinkworth, A., Sansom, R. & Wills, M. A. Phylogenetic incongruence and homoplasy in the appendages and bodies of arthropods: why broad character sampling is best. Zool. J. Linn. Soc. 187, 100–116 (2019).

    Article 

    Google Scholar 

  • Brown, J. W. & Smith, S. A. The past sure is tense: on interpreting phylogenetic divergence time estimates. Syst. Biol. 67, 340–353 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Barba-Montoya, J., Dos Reis, M. & Yang, Z. H. Comparison of different strategies for using fossil calibrations to generate the time prior in Bayesian molecular clock dating. Mol. Phylogenetics Evolution 114, 386–400 (2017).

    CAS 
    Article 

    Google Scholar 

  • Sanderson, M. J. & Donoghue, M. J. Patterns of variation in levels of homoplasy. Evolution 43, 1781–1795 (1989).

    PubMed 
    Article 

    Google Scholar 

  • Alroy, J. Fossilworks: Gateway to the Paleobiology Database, http://fossilworks.org (2019).

  • Benton, M. J. The Fossil Record 2. (Chapman & Hall, 1993).

  • Cohen, K. M., Harper, D. A. T. & Gibbard, P. L. ICS International Chronostratigraphic Chart 2021/02, http://www.stratigraphy.org/ (2021).

  • Gradstein, F. & Ogg, J. Geologic time scale 2004–why, how, and where next! Lethaia 37, 175–181 (2004).

    Article 

    Google Scholar 

  • Rohde, R. A. The GeoWhen Database, (2005).

  • O’Leary, M. A. et al. The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339, 662–667 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Kluge, A. G. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. Biol. 38, 7–25 (1989).

    Article 

    Google Scholar 

  • Tolson, P. J. Phylogenetics of the boid snake genus Epicrates and Caribbean vicariance theory. Occasional Pap. Mus. Zool., Univ. Mich. 715, 1–68 (1987).

    Google Scholar 

  • Clopper, C. J. & Pearson, E. S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404–413 (1934).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Municipal biowaste treatment plants contribute to the contamination of the environment with residues of biodegradable plastics with putative higher persistence potential

    Ploidy dynamics in aphid host cells harboring bacterial symbionts