in

Nematode community structure along elevation gradient in high altitude vegetation cover of Gangotri National Park (Uttarakhand), India

  • 1.

    Hoschitz, M. & Kaufmann, R. Nematode community composition in five alpine habitats. Nematology 6, 737–747 (2004).

    Google Scholar 

  • 2.

    Treonis, A. M. & Wall, D. H. Soil nematodes and desiccation survival in the extreme arid environment of the Antarctic dry valleys. Integr. Comp. Biol. 45, 741–750 (2005).

    PubMed 

    Google Scholar 

  • 3.

    Tong, F. C., Xiao, Y. & Wang, Q. L. Soil Nematode community structure on the northern slope of Changbai Mountain Northeast China. J. For. Res. 21, 93–98 (2010).

    Google Scholar 

  • 4.

    Yeates, G. W. Nematodes as soil indicators functional and biodiversity aspects. Biol. Fertil. Soils 37, 199–210 (2003).

    Google Scholar 

  • 5.

    Bakonyi, G. et al. Soil Nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland. Appl. Soil. Ecol. 37(1–2), 31–40 (2007).

    Google Scholar 

  • 6.

    Van Eekeren, N. et al. Ecosystem services in grassland associated with biotic and abiotic soil parameters. Soil Biol. Biochem. 42(9), 1491–1504 (2010).

    Google Scholar 

  • 7.

    Kitagami, Y., Kanzaki, N. & Matsuda, Y. Distribution and community structure of soil nematodes in coastal Japanese pine forests were shaped by harsh environmental conditions. Appl. Soil. Ecol. 119, 91–98 (2017).

    Google Scholar 

  • 8.

    Salamun, P. et al. The effects of vegetation cover on soil Nematode communities in various biotopes disturbed by industrial emissions. Sci. Total Environ 592, 106–114 (2017).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 9.

    Kashyap, P., Bhardwaj, M. & Uniyal, V. P. Bibliography on the soil Nematodes of the Indian Himalayan Region. In Bibliography on the Fauna and Micro Flora of the Indian Himalayan Region. ENVIS Bulletin: Wildlife and Protected Areas Vol. 17 (ed. Sathyakumar, S.) 239–256 (Wildlife Institute of India, 2016).

    Google Scholar 

  • 10.

    Kumar, S. & Rawat, S. First report on the root-knot Nematode Meloidogyneenterolobii (Yang and Eisenback 1988) infecting guava (Psidiumguajava) in Udham Singh Nagar of Uttarakhand India. Int. J. Curr. Microbiol. Appl. Sci. 7(4), 1720–1724 (2018).

    CAS 

    Google Scholar 

  • 11.

    Kayani, M. Z., Mukhtar, T. & Hussain, M. A. Interaction between Nematode inoculum density and plant age on growth and yield of cucumber and reproduction of Meloidogyne incognita. Pak. J. Zool. 50(3), 897–902 (2018).

    Google Scholar 

  • 12.

    Rizvi, A. N., Sen, D., Maity, P. & Kumar, H. Nematoda (soil inhabiting Nematodes). In Faunal Diversity of Indian Himalaya (eds Chandra, K. et al.) 115–134 (Director Zool Surv India, 2018).

    Google Scholar 

  • 13.

    Devetter, M., Hanel, L., Rehakova, K. & Anddolezal, J. Diversity and feeding strategies of soil microfauna along elevation gradients in Himalayan cold deserts. PLoS ONE 12(11), e0187646 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Afzal, S., Nesar, H., Imran, Z. & Ahmad, W. Altitudinal gradient affect abundance, diversity and metabolicfootprint of soil nematodesin Banihal-Pass of Pir-Panjalmountain range. Sci. Rep. 11, 16214 (2021).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 15.

    Dong, K. et al. Soil nematodes show a mid-elevation diversity maximum and elevational zonation on Mt. Norikura, Japan. Sci. Rep. 7, 3028 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 16.

    Powers, L. E., Ho, M. C., Freckman, D. W. & Virginia, R. A. Distribution, community structure and microhabitats of soil invertebrates along an elevational gradient in Taylor Valley Antarctica. Arct. Alp. Res. 30, 133–141 (1998).

    Google Scholar 

  • 17.

    Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P. & Rasmann, S. T. Abundance, diversity, and metabolic footprint of soil nematodes is highest in high elevation alpine grasslands. Front. Ecol. Evol. 4, 84 (2016).

    Google Scholar 

  • 18.

    Veen, G. F. et al. Coordinated responses of soil communities to elevation in three subarctic vegetation types. Oikos 126, 1586–1599 (2017).

    Google Scholar 

  • 19.

    Burrows, C. J. Processes of Vegetation Change 1 (Unwin Hyman, 1990).

    Google Scholar 

  • 20.

    De Kort, H. et al. Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat. Commun. 12, 516 (2021).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 21.

    Liu, J., Yang, Q., Siemann, E., Huang, W. & Ding, J. Latitudinal and altitudinal patterns of soil nematode communities under tallow tree (Triadicasebifera) in China. Plant Ecol. 220, 965–976 (2019).

    Google Scholar 

  • 22.

    Qing, X., Bert, W., Steel, H., Quisado, J. & de Ley, I. T. Soil and litter nematode diversity of Mount Hamiguitan, the Philippines, with description of Bicirronemahamiguitanense n. sp (Rhabditida: Bicirronematidae). Nematology 17, 325–344 (2015).

    Google Scholar 

  • 23.

    Wasilewska, L. Soil invertebrates as bioindicators with special reference to soil inhabiting nematodes. Russ. J. Nematol. 5, 113–126 (1997).

    Google Scholar 

  • 24.

    Mladenov, A., Lazarova, S. & Peneva, V. Distribution patterns of Nematode communities in an urban forest in Sofia Bulgaria. In Ecology of the City of Sofia. Species and Communities in an Urban Environment (eds Peneva, L. et al.) 281–297 (Sofia Bulgaria Pen-soft Publishers, 2004).

    Google Scholar 

  • 25.

    Hánel, L. Comparison of soil Nematode communities in three spruce forests at the Bobín Mount Czech Republic. Biológia 51, 485–493 (1996).

    Google Scholar 

  • 26.

    Hanel, L. Soil Nematodes in five spruce forests of the Beskydymountains Czech Republic. Fundam. Appl. Nematol. 19(1), 15–24 (1996).

    Google Scholar 

  • 27.

    Zhang, S. et al. Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai-Tibetan Plateau China. Biol. Fertil. Soils 48(4), 393–400 (2012).

    CAS 

    Google Scholar 

  • 28.

    Yeates, G. W. Abundance diversityand resilience of Nematode assemblage in forest soils. Can. J. For. Res. 37, 216–225 (2007).

    Google Scholar 

  • 29.

    Mulder, C., Zwart, D. D., Van Wijnen, H. J., Schouten, A. J. & Andbreure, A. M. Observational and simulated evidence of ecological shifts within the soil Nematode community of agroecosystems under conventional and organic farming. Funct. Ecol. 17(4), 516–525 (2003).

    Google Scholar 

  • 30.

    Butenko, K. O., Gongalsky, K. B., Korobushkin, D. I., Ekschmitt, K. & Zaitsev, A. S. Forest fires alter the trophic structure of soil nematode communities. Soil Biol. Biochem. 109, 107–117 (2017).

    CAS 

    Google Scholar 

  • 31.

    Tibbett, M. et al. Long-term acidification of pH neutral grasslands affects soil biodiversity fertility and function in a heathland restoration. CATENA 180, 401–415 (2019).

    CAS 

    Google Scholar 

  • 32.

    Zhang, S. et al. Tillage effects outweigh seasonal effects on soil Nematode community structure. Soil Tillage Res. 192, 233–239 (2019).

    Google Scholar 

  • 33.

    Liang, S. et al. Soil Nematode community composition and stability under different nitrogen additions in a semiarid grassland. Glob. Ecol. Conserv. 22, e00965n (2020).

    Google Scholar 

  • 34.

    Olatunji, O. A. et al. The effect of phosphorus addition, soil moisture, and plant type on soil nematode abundance and community composition. J. Soil. Sediment 19, 1139–1150 (2019).

    CAS 

    Google Scholar 

  • 35.

    Wang, J. et al. Changes in soil nematode abundance and composition under elevated [CO2] and canopy warming in a rice paddy field. Plant Soil 445(1), 425–437 (2019).

    CAS 

    Google Scholar 

  • 36.

    Zhang, Z. W. et al. The impacts of nutrient addition and livestock exclosure on the soil Nematode community in degraded grassland. Land Degrad. Dev. 30(13), 1574–1583 (2019).

    Google Scholar 

  • 37.

    Bastow, J. The impacts of a wildfire in a semiarid grassland on soil Nematode abundances over 4 years. Biol. Fertil. Soils 56, 675–685 (2020).

    Google Scholar 

  • 38.

    Renčo, M., Gomoryova, E. & Cerevková, A. The effect of soil type and ecosystems on the soil nematode and microbial communities. Helminthologia 57(2), 129 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Saeed, S., Barozai, M. Y. K., Ahmad, A. & Shah, S. H. Impact of altitude on soil physical and chemical properties in SraGhurgai (Takatu mountain range) Quetta Balochistan. Int. J. Sci. Eng. Res. 5(3), 730–735 (2014).

    Google Scholar 

  • 40.

    Zhang, X. Y. et al. Effects of rainfall amount and frequency on soil nitrogen mineralization in Zoigê alpine wetland. Eur. J. Soil Biol. 97, 103170 (2020).

    CAS 

    Google Scholar 

  • 41.

    Juan, Y. et al. Simulation of soil freezing-thawing cycles under typical winter conditions: Implications for nitrogen mineralization. J. Soils Sediments 20(1), 143–152 (2020).

    CAS 

    Google Scholar 

  • 42.

    Cutz-Pool, L. Q., Palacios-Vargas, J. G., Cano-Santana, Z. & Castaño-Meneses, G. Diversity patterns of Collembola in an elevational gradient in the NW slope of Iztaccíhuatl volcano state of Mexico, Mexico. Entomol. News 121, 249–261 (2010).

    Google Scholar 

  • 43.

    Baniyamuddin, M., Tomar, V. V. S. & Ahmad, W. Functional diversity of soil inhabiting nematodes in natural forests of Arunachal Pradesh India. Nematol. Mediterr. 35, 109–121 (2007).

    Google Scholar 

  • 44.

    Hanel, L. Nematode assemblages indicate soil restoration on colliery spoils afforested by planting different tree species and by natural succession. Appl. Soil. Ecol. 40, 86–99 (2008).

    Google Scholar 

  • 45.

    Rizvi, A. N. Community analysis of soil inhabiting nematodes in natural Sal forests of Dehradun India. Int. J. Nematol. 18, 181–190 (2008).

    Google Scholar 

  • 46.

    Keith, A. M. et al. Strong impacts of below-ground tree inputs on soil nematode trophic composition. Soil Biol. Biochem. 41, 1060–1065 (2009).

    CAS 

    Google Scholar 

  • 47.

    Keith, A. M. et al. Birch invasion of heather moorland increases nematode diversity and trophic complexity. Soil Biol. Biochem. 38, 3421–3430 (2006).

    CAS 

    Google Scholar 

  • 48.

    Forge, T. & Simard, S. Structure of nematode communities in forest soils of southern British Columbia relationships to nitrogen mineralization and effects of clearcut harvesting and fertilization. Biol. Fertil. Soils 34, 170–178 (2001).

    CAS 

    Google Scholar 

  • 49.

    Savin, M. C., Gorres, J. H., Neher, D. A. & Amador, J. A. Biogeophysical factors influencing soil respiration and mineral nitrogen content in an old field soil. Soil Biol. Biochem. 33, 429–438 (2001).

    CAS 

    Google Scholar 

  • 50.

    Postma-Blaauw, M. B. et al. Within trophic group interactions of bacterivorous nematode species and their effects on the bacterial community and nitrogen mineralization. Oecologia 142, 428–439 (2005).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 51.

    Bongers, T. & Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 14, 224–228 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Ferris, H., Bongers, T. & De Goede, R. G. M. A framework for soil food web diagnostics extension of the nematode faunal analysis concept. Appl. Soil. Ecol. 18, 13–29 (2001).

    Google Scholar 

  • 53.

    Ferris, H., Bongers, A.M.T. & De Goede, R. Nematode faunal analyses to assess food web enrichment and connectance. Nematology monographs and perspectives. In Proceedings of the Fourth International Congress of Nematology, Brill 503–510 (2004).

  • 54.

    Ferris, H., Zheng, L. & Walker, M. A. Resistance of grape rootstocks to plant-parasitic nematodes. J. Nematol. 44, 377–386 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Quist, C. W., Van Der Putten, W. H. & Thakur, M. P. Soil predator loss alters aboveground stoichiometry in a native but not in a related range-expanding plant when exposed to periodic heat waves. Soil Biol. Biochem. 150, 107999 (2020).

    CAS 

    Google Scholar 

  • 56.

    Ferris, H. & Matute, M. M. Structural and functional succession in the nematode fauna of a soil food web. Appl. Soil. Ecol. 23, 93–110 (2003).

    Google Scholar 

  • 57.

    Tomar, W. W. S. & Ahmad, W. Food web diagnostics and functional diversity of soil inhabiting nematodes in a natural woodland. Helminthologia 46, 183–189 (2009).

    Google Scholar 

  • 58.

    Hanel, N. Soil Nematodes in alpine meadows of the Tatra National Park (Slovak Republic). Helminthologia 54(1), 48–67 (2017).

    Google Scholar 

  • 59.

    Hanel, L. & Cerevkova, A. Diversity of soil Nematodes in meadows of the White Carpathians. Helminthologia 43, 109–116 (2006).

    Google Scholar 

  • 60.

    Neely, C. L., Beare, M. H., Hargrove, W. L. & Coleman, D. C. Relationships between fungal and bacterial substrate-induced respiration biomass and plant residue decomposition. Soil Biol. Biochem. 23(10), 947–954 (1991).

    CAS 

    Google Scholar 

  • 61.

    Moller, J., Miller, M. & Kjoller, A. Fungal–bacterial interaction on beech leaves: Influence on decomposition and dissolved organic carbon quality. Soil Biol. Biochem. 31(3), 367–374 (1999).

    CAS 

    Google Scholar 

  • 62.

    Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).

    CAS 

    Google Scholar 

  • 63.

    Nottingham, A. T. et al. Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils. Biol. Fertil. Soils 54(2), 219–228 (2018).

    CAS 

    Google Scholar 

  • 64.

    Albright, M. B. et al. Soil bacterial and fungal richness forecast patterns of early pine litter decomposition. Front. Microbiol. 11, 542220 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Champion, H. G. & Seth, S. K. Revised Forest Types of India (Manager of Publications Government of India Delhi, 1968).

    Google Scholar 

  • 66.

    Singh, D., Chhonkar, P. K. & Pandey, R. N. Manual on Soil, Plant and Water Analysis (Westville Publishing House, 2005).

    Google Scholar 

  • 67.

    Jackson, M. L. Soil Chemical Analysis 498 (Prentice-Hall of India Pvt. Ltd, 1973).

    Google Scholar 

  • 68.

    Walkley, A. & Black, I. A. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–37 (1934).

    CAS 
    ADS 

    Google Scholar 

  • 69.

    Kjeldahl, J. New method for the determination of nitrogen. Chem. News 48(1240), 101–102 (1883).

    Google Scholar 

  • 70.

    Olsen, S. R., Cole, W., Watanable, F. S. & Dean, L. A. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Methods Soil Anal. Circ. 939(1883), 1–56 (1954).

    Google Scholar 

  • 71.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1km spatial resolution climate surfaces for globalland areas. Int. J. Climatol. 37(12), 4302–4315 (2017).

    Google Scholar 

  • 72.

    Cobb, N.A. Estimating the Nematode population of the soil. In Agricultural Technical Circular No. 1 48 (United States Department of Agriculture Bureau of Plant Industry, 1918).

  • 73.

    Yeates, G. W., Bongers, T., De Goede, R. G. M., Freckman, D. W. & Georgieva, S. S. Feeding habits in soil Nematode families and genera—An outline for soil ecologists. J. Nematol. 25, 315–331 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Forge, T. & Simard, S. Structure of nematode communities in forest soils of southern British Columbia: Relationships to nitrogen mineralization and effects of clearcut harvesting and fertilization. Biol. Fertil. Soils 34, 170–178. https://doi.org/10.1007/s003740100390 (2001).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Bongers, T. The maturity index an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83, 14–19 (1990).

    PubMed 
    ADS 

    Google Scholar 

  • 76.

    Bongers, T. & Bongers, M. Functional diversity of nematodes. Appl. Soil. Ecol. 10, 239–251 (1998).

    Google Scholar 

  • 77.

    Bongers, T., De Goede, R. G. M., Korthals, G. W. & Yeates, G. W. Proposed changes of c–p classification for nematodes. Russ. J. Nematol. 3, 61–62 (1995).

    Google Scholar 

  • 78.

    Neher, D. A. & Campbell, C. L. Nematode communities and microbial biomass in soils with annual and perennial crops. Appl. Soil. Ecol. 1(1), 17–28 (1994).

    Google Scholar 

  • 79.

    Sieriebriennikov, B., Ferris, H. & de Goede, R. G. NINJA: An automated calculation system for nematode-based biological monitoring. Eur. J. Soil Biol. 61, 90–93 (2014).

    Google Scholar 

  • 80.

    Andrassy, I. T. Determination of volume and weight of nematodes. Acta Zool. Acad. Sci. Hung. 2, 1–15 (1956).

    Google Scholar 

  • 81.

    Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 46, 97–104 (2010).

    Google Scholar 

  • 82.

    Oksanen, J.B. et al. vegan: Community ecology package. R package version 5–6 (2020).

  • 83.

    R Core Team. R: A Language and Environment for Statistical Computing (2019). Retrieved from https://www.R-project.org.

  • 84.

    Figures 1, 3 and 4 was prepared using GraphPad Prism version 8.0.2 for Windows, GraphPadSofware, La Jolla California USA. www.graphpad.com.


  • Source: Ecology - nature.com

    Wildland fire smoke alters the composition, diversity, and potential atmospheric function of microbial life in the aerobiome

    No short-term effect of sinking microplastics on heterotrophy or sediment clearing in the tropical coral Stylophora pistillata