Hoschitz, M. & Kaufmann, R. Nematode community composition in five alpine habitats. Nematology 6, 737–747 (2004).
Treonis, A. M. & Wall, D. H. Soil nematodes and desiccation survival in the extreme arid environment of the Antarctic dry valleys. Integr. Comp. Biol. 45, 741–750 (2005).
Google Scholar
Tong, F. C., Xiao, Y. & Wang, Q. L. Soil Nematode community structure on the northern slope of Changbai Mountain Northeast China. J. For. Res. 21, 93–98 (2010).
Yeates, G. W. Nematodes as soil indicators functional and biodiversity aspects. Biol. Fertil. Soils 37, 199–210 (2003).
Bakonyi, G. et al. Soil Nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland. Appl. Soil. Ecol. 37(1–2), 31–40 (2007).
Van Eekeren, N. et al. Ecosystem services in grassland associated with biotic and abiotic soil parameters. Soil Biol. Biochem. 42(9), 1491–1504 (2010).
Kitagami, Y., Kanzaki, N. & Matsuda, Y. Distribution and community structure of soil nematodes in coastal Japanese pine forests were shaped by harsh environmental conditions. Appl. Soil. Ecol. 119, 91–98 (2017).
Salamun, P. et al. The effects of vegetation cover on soil Nematode communities in various biotopes disturbed by industrial emissions. Sci. Total Environ 592, 106–114 (2017).
Google Scholar
Kashyap, P., Bhardwaj, M. & Uniyal, V. P. Bibliography on the soil Nematodes of the Indian Himalayan Region. In Bibliography on the Fauna and Micro Flora of the Indian Himalayan Region. ENVIS Bulletin: Wildlife and Protected Areas Vol. 17 (ed. Sathyakumar, S.) 239–256 (Wildlife Institute of India, 2016).
Kumar, S. & Rawat, S. First report on the root-knot Nematode Meloidogyneenterolobii (Yang and Eisenback 1988) infecting guava (Psidiumguajava) in Udham Singh Nagar of Uttarakhand India. Int. J. Curr. Microbiol. Appl. Sci. 7(4), 1720–1724 (2018).
Google Scholar
Kayani, M. Z., Mukhtar, T. & Hussain, M. A. Interaction between Nematode inoculum density and plant age on growth and yield of cucumber and reproduction of Meloidogyne incognita. Pak. J. Zool. 50(3), 897–902 (2018).
Rizvi, A. N., Sen, D., Maity, P. & Kumar, H. Nematoda (soil inhabiting Nematodes). In Faunal Diversity of Indian Himalaya (eds Chandra, K. et al.) 115–134 (Director Zool Surv India, 2018).
Devetter, M., Hanel, L., Rehakova, K. & Anddolezal, J. Diversity and feeding strategies of soil microfauna along elevation gradients in Himalayan cold deserts. PLoS ONE 12(11), e0187646 (2017).
Google Scholar
Afzal, S., Nesar, H., Imran, Z. & Ahmad, W. Altitudinal gradient affect abundance, diversity and metabolicfootprint of soil nematodesin Banihal-Pass of Pir-Panjalmountain range. Sci. Rep. 11, 16214 (2021).
Google Scholar
Dong, K. et al. Soil nematodes show a mid-elevation diversity maximum and elevational zonation on Mt. Norikura, Japan. Sci. Rep. 7, 3028 (2017).
Google Scholar
Powers, L. E., Ho, M. C., Freckman, D. W. & Virginia, R. A. Distribution, community structure and microhabitats of soil invertebrates along an elevational gradient in Taylor Valley Antarctica. Arct. Alp. Res. 30, 133–141 (1998).
Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P. & Rasmann, S. T. Abundance, diversity, and metabolic footprint of soil nematodes is highest in high elevation alpine grasslands. Front. Ecol. Evol. 4, 84 (2016).
Veen, G. F. et al. Coordinated responses of soil communities to elevation in three subarctic vegetation types. Oikos 126, 1586–1599 (2017).
Burrows, C. J. Processes of Vegetation Change 1 (Unwin Hyman, 1990).
De Kort, H. et al. Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat. Commun. 12, 516 (2021).
Google Scholar
Liu, J., Yang, Q., Siemann, E., Huang, W. & Ding, J. Latitudinal and altitudinal patterns of soil nematode communities under tallow tree (Triadicasebifera) in China. Plant Ecol. 220, 965–976 (2019).
Qing, X., Bert, W., Steel, H., Quisado, J. & de Ley, I. T. Soil and litter nematode diversity of Mount Hamiguitan, the Philippines, with description of Bicirronemahamiguitanense n. sp (Rhabditida: Bicirronematidae). Nematology 17, 325–344 (2015).
Wasilewska, L. Soil invertebrates as bioindicators with special reference to soil inhabiting nematodes. Russ. J. Nematol. 5, 113–126 (1997).
Mladenov, A., Lazarova, S. & Peneva, V. Distribution patterns of Nematode communities in an urban forest in Sofia Bulgaria. In Ecology of the City of Sofia. Species and Communities in an Urban Environment (eds Peneva, L. et al.) 281–297 (Sofia Bulgaria Pen-soft Publishers, 2004).
Hánel, L. Comparison of soil Nematode communities in three spruce forests at the Bobín Mount Czech Republic. Biológia 51, 485–493 (1996).
Hanel, L. Soil Nematodes in five spruce forests of the Beskydymountains Czech Republic. Fundam. Appl. Nematol. 19(1), 15–24 (1996).
Zhang, S. et al. Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai-Tibetan Plateau China. Biol. Fertil. Soils 48(4), 393–400 (2012).
Google Scholar
Yeates, G. W. Abundance diversityand resilience of Nematode assemblage in forest soils. Can. J. For. Res. 37, 216–225 (2007).
Mulder, C., Zwart, D. D., Van Wijnen, H. J., Schouten, A. J. & Andbreure, A. M. Observational and simulated evidence of ecological shifts within the soil Nematode community of agroecosystems under conventional and organic farming. Funct. Ecol. 17(4), 516–525 (2003).
Butenko, K. O., Gongalsky, K. B., Korobushkin, D. I., Ekschmitt, K. & Zaitsev, A. S. Forest fires alter the trophic structure of soil nematode communities. Soil Biol. Biochem. 109, 107–117 (2017).
Google Scholar
Tibbett, M. et al. Long-term acidification of pH neutral grasslands affects soil biodiversity fertility and function in a heathland restoration. CATENA 180, 401–415 (2019).
Google Scholar
Zhang, S. et al. Tillage effects outweigh seasonal effects on soil Nematode community structure. Soil Tillage Res. 192, 233–239 (2019).
Liang, S. et al. Soil Nematode community composition and stability under different nitrogen additions in a semiarid grassland. Glob. Ecol. Conserv. 22, e00965n (2020).
Olatunji, O. A. et al. The effect of phosphorus addition, soil moisture, and plant type on soil nematode abundance and community composition. J. Soil. Sediment 19, 1139–1150 (2019).
Google Scholar
Wang, J. et al. Changes in soil nematode abundance and composition under elevated [CO2] and canopy warming in a rice paddy field. Plant Soil 445(1), 425–437 (2019).
Google Scholar
Zhang, Z. W. et al. The impacts of nutrient addition and livestock exclosure on the soil Nematode community in degraded grassland. Land Degrad. Dev. 30(13), 1574–1583 (2019).
Bastow, J. The impacts of a wildfire in a semiarid grassland on soil Nematode abundances over 4 years. Biol. Fertil. Soils 56, 675–685 (2020).
Renčo, M., Gomoryova, E. & Cerevková, A. The effect of soil type and ecosystems on the soil nematode and microbial communities. Helminthologia 57(2), 129 (2020).
Google Scholar
Saeed, S., Barozai, M. Y. K., Ahmad, A. & Shah, S. H. Impact of altitude on soil physical and chemical properties in SraGhurgai (Takatu mountain range) Quetta Balochistan. Int. J. Sci. Eng. Res. 5(3), 730–735 (2014).
Zhang, X. Y. et al. Effects of rainfall amount and frequency on soil nitrogen mineralization in Zoigê alpine wetland. Eur. J. Soil Biol. 97, 103170 (2020).
Google Scholar
Juan, Y. et al. Simulation of soil freezing-thawing cycles under typical winter conditions: Implications for nitrogen mineralization. J. Soils Sediments 20(1), 143–152 (2020).
Google Scholar
Cutz-Pool, L. Q., Palacios-Vargas, J. G., Cano-Santana, Z. & Castaño-Meneses, G. Diversity patterns of Collembola in an elevational gradient in the NW slope of Iztaccíhuatl volcano state of Mexico, Mexico. Entomol. News 121, 249–261 (2010).
Baniyamuddin, M., Tomar, V. V. S. & Ahmad, W. Functional diversity of soil inhabiting nematodes in natural forests of Arunachal Pradesh India. Nematol. Mediterr. 35, 109–121 (2007).
Hanel, L. Nematode assemblages indicate soil restoration on colliery spoils afforested by planting different tree species and by natural succession. Appl. Soil. Ecol. 40, 86–99 (2008).
Rizvi, A. N. Community analysis of soil inhabiting nematodes in natural Sal forests of Dehradun India. Int. J. Nematol. 18, 181–190 (2008).
Keith, A. M. et al. Strong impacts of below-ground tree inputs on soil nematode trophic composition. Soil Biol. Biochem. 41, 1060–1065 (2009).
Google Scholar
Keith, A. M. et al. Birch invasion of heather moorland increases nematode diversity and trophic complexity. Soil Biol. Biochem. 38, 3421–3430 (2006).
Google Scholar
Forge, T. & Simard, S. Structure of nematode communities in forest soils of southern British Columbia relationships to nitrogen mineralization and effects of clearcut harvesting and fertilization. Biol. Fertil. Soils 34, 170–178 (2001).
Google Scholar
Savin, M. C., Gorres, J. H., Neher, D. A. & Amador, J. A. Biogeophysical factors influencing soil respiration and mineral nitrogen content in an old field soil. Soil Biol. Biochem. 33, 429–438 (2001).
Google Scholar
Postma-Blaauw, M. B. et al. Within trophic group interactions of bacterivorous nematode species and their effects on the bacterial community and nitrogen mineralization. Oecologia 142, 428–439 (2005).
Google Scholar
Bongers, T. & Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 14, 224–228 (1999).
Google Scholar
Ferris, H., Bongers, T. & De Goede, R. G. M. A framework for soil food web diagnostics extension of the nematode faunal analysis concept. Appl. Soil. Ecol. 18, 13–29 (2001).
Ferris, H., Bongers, A.M.T. & De Goede, R. Nematode faunal analyses to assess food web enrichment and connectance. Nematology monographs and perspectives. In Proceedings of the Fourth International Congress of Nematology, Brill 503–510 (2004).
Ferris, H., Zheng, L. & Walker, M. A. Resistance of grape rootstocks to plant-parasitic nematodes. J. Nematol. 44, 377–386 (2012).
Google Scholar
Quist, C. W., Van Der Putten, W. H. & Thakur, M. P. Soil predator loss alters aboveground stoichiometry in a native but not in a related range-expanding plant when exposed to periodic heat waves. Soil Biol. Biochem. 150, 107999 (2020).
Google Scholar
Ferris, H. & Matute, M. M. Structural and functional succession in the nematode fauna of a soil food web. Appl. Soil. Ecol. 23, 93–110 (2003).
Tomar, W. W. S. & Ahmad, W. Food web diagnostics and functional diversity of soil inhabiting nematodes in a natural woodland. Helminthologia 46, 183–189 (2009).
Hanel, N. Soil Nematodes in alpine meadows of the Tatra National Park (Slovak Republic). Helminthologia 54(1), 48–67 (2017).
Hanel, L. & Cerevkova, A. Diversity of soil Nematodes in meadows of the White Carpathians. Helminthologia 43, 109–116 (2006).
Neely, C. L., Beare, M. H., Hargrove, W. L. & Coleman, D. C. Relationships between fungal and bacterial substrate-induced respiration biomass and plant residue decomposition. Soil Biol. Biochem. 23(10), 947–954 (1991).
Google Scholar
Moller, J., Miller, M. & Kjoller, A. Fungal–bacterial interaction on beech leaves: Influence on decomposition and dissolved organic carbon quality. Soil Biol. Biochem. 31(3), 367–374 (1999).
Google Scholar
Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).
Google Scholar
Nottingham, A. T. et al. Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils. Biol. Fertil. Soils 54(2), 219–228 (2018).
Google Scholar
Albright, M. B. et al. Soil bacterial and fungal richness forecast patterns of early pine litter decomposition. Front. Microbiol. 11, 542220 (2020).
Google Scholar
Champion, H. G. & Seth, S. K. Revised Forest Types of India (Manager of Publications Government of India Delhi, 1968).
Singh, D., Chhonkar, P. K. & Pandey, R. N. Manual on Soil, Plant and Water Analysis (Westville Publishing House, 2005).
Jackson, M. L. Soil Chemical Analysis 498 (Prentice-Hall of India Pvt. Ltd, 1973).
Walkley, A. & Black, I. A. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–37 (1934).
Google Scholar
Kjeldahl, J. New method for the determination of nitrogen. Chem. News 48(1240), 101–102 (1883).
Olsen, S. R., Cole, W., Watanable, F. S. & Dean, L. A. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Methods Soil Anal. Circ. 939(1883), 1–56 (1954).
Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1km spatial resolution climate surfaces for globalland areas. Int. J. Climatol. 37(12), 4302–4315 (2017).
Cobb, N.A. Estimating the Nematode population of the soil. In Agricultural Technical Circular No. 1 48 (United States Department of Agriculture Bureau of Plant Industry, 1918).
Yeates, G. W., Bongers, T., De Goede, R. G. M., Freckman, D. W. & Georgieva, S. S. Feeding habits in soil Nematode families and genera—An outline for soil ecologists. J. Nematol. 25, 315–331 (1993).
Google Scholar
Forge, T. & Simard, S. Structure of nematode communities in forest soils of southern British Columbia: Relationships to nitrogen mineralization and effects of clearcut harvesting and fertilization. Biol. Fertil. Soils 34, 170–178. https://doi.org/10.1007/s003740100390 (2001).
Google Scholar
Bongers, T. The maturity index an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83, 14–19 (1990).
Google Scholar
Bongers, T. & Bongers, M. Functional diversity of nematodes. Appl. Soil. Ecol. 10, 239–251 (1998).
Bongers, T., De Goede, R. G. M., Korthals, G. W. & Yeates, G. W. Proposed changes of c–p classification for nematodes. Russ. J. Nematol. 3, 61–62 (1995).
Neher, D. A. & Campbell, C. L. Nematode communities and microbial biomass in soils with annual and perennial crops. Appl. Soil. Ecol. 1(1), 17–28 (1994).
Sieriebriennikov, B., Ferris, H. & de Goede, R. G. NINJA: An automated calculation system for nematode-based biological monitoring. Eur. J. Soil Biol. 61, 90–93 (2014).
Andrassy, I. T. Determination of volume and weight of nematodes. Acta Zool. Acad. Sci. Hung. 2, 1–15 (1956).
Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 46, 97–104 (2010).
Oksanen, J.B. et al. vegan: Community ecology package. R package version 5–6 (2020).
R Core Team. R: A Language and Environment for Statistical Computing (2019). Retrieved from https://www.R-project.org.
Figures 1, 3 and 4 was prepared using GraphPad Prism version 8.0.2 for Windows, GraphPadSofware, La Jolla California USA. www.graphpad.com.
Source: Ecology - nature.com