in

Niche conservatism and evolution of climatic tolerance in the Neotropical orchid genera Sobralia and Brasolia (Orchidaceae)

  • Darwin, C. On the Origin of Species. Facsimile of the First Edition (Harvard University Press, 1859).

    Google Scholar 

  • Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 326, 119–157 (1989).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sillero, N., Reis, M., Vieira, C. P., Vieira, J. & Morales-Hojas, R. Niche evolution and thermal adaptation in the temperate species Drosophila americana. J. Evol. Biol. 27, 1549–1561 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Ramos, R. et al. Global spatial ecology of three closely-related gadfly petrels. Sci. Rep. 6, 23447 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, B., Cheng, J., Ge, D., Xia, L. & Yang, Q. Phylogeography and ecological niche modeling unravel the evolutionary history of the Yarkand hare, Lepus yarkandensis (Mammalia: Leporidae), through the Quaternary. BMC Evol. Biol. 19, 113 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. 36, 519–539 (2005).

    Google Scholar 

  • Losos, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995–1003 (2008).

    PubMed 

    Google Scholar 

  • Crisp, M. D. & Cook, L. G. Phylogenetic niche conservatism: What are the underlying evolutionary and ecological causes?. New Phytol. 196, 681–694 (2012).

    PubMed 

    Google Scholar 

  • Qian, H. & Ricklefs, R. E. Geographical distribution and ecological conservatism of disjunct genera of vascular plants in eastern Asia and eastern North America. J. Ecol. 92, 253–265 (2004).

    Google Scholar 

  • Vitt, L. J., Zani, P. A. & Espósito, M. C. Historical ecology of Amazonian lizards: Implications for community ecology. Oikos 87, 286–294 (1999).

    Google Scholar 

  • Rice, N. H., Martínez-Meyer, E. & Peterson, A. T. Ecological niche differentiation in the Aphelocoma jays: A phylogenetic perspective. Biol. J. Linn. Soc. 80, 369–383 (2003).

    Google Scholar 

  • Jost, L. Explosive local radiation of the genus Teagueia (Orchidaceae) in the Upper Pastaza Watershed of Ecuador. Lyonia 7, 42–47 (2004).

    Google Scholar 

  • Antonelli, A., Verola, C. F., Parisod, C. & Gustafsson, A. L. S. Climate cooling promoted the expansion and radiation of a threatened group of South American orchids (Epidendroideae: Laeliinae). Biol. J. Linn. Soc. 100, 597–607 (2010).

    Google Scholar 

  • Johnson, S. D., Linder, H. P. & Steiner, K. E. Phylogeny and radiation of pollination systems in Disa (Orchidaceae). Am. J. Bot. 85, 402–411 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Kolanowska, M., Grochocka, E. & Konowalik, K. Phylogenetic climatic niche conservatism and evolution of climatic suitability in Neotropical Angraecinae (Vandeae, Orchidaceae) and their closest African relatives. PeerJ 5, e3328 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dressler, R. L., Blanco, M. A., Pupulin, F. & Neubig, K. M. Proposal to conserve the name Sobralia (Orchidaceae) with a conserved type. Taxon 60, 907–908 (2011).

    Google Scholar 

  • Baranow, P., Dudek, M. & Szlachetko, D. L. Brasolia, a new genus highlighted from Sobralia (Orchidaceae). Plant Syst. Evol. 303, 853–871 (2017).

    CAS 

    Google Scholar 

  • Dressler, R. L. The major sections or groups within Sobralia, with four new species from Panama and Costa Rica, S. crispissima, S. gloriana, S. mariannae and S. nutans. Lankesteriana 5, 9–15 (2002).

    Google Scholar 

  • Pridgeon, A. M., Cribb, P. J., Chase, M. W. & Rasmussen, F. N. Genera Orchidacearum Vol. 4: Epidendroideae Part 1 (Oxford University Press, 2005).

    Google Scholar 

  • Van der Cingel, N. A. An Atlas of Orchid Pollination: America, Africa, Asia and Australia (Balkema, 2001).

    Google Scholar 

  • Dodson, C. H. Why are there so many orchid species. Lankesteriana 7, 99–103 (2003).

    Google Scholar 

  • Van Der Pijl, L. & Dodson, C. H. Orchid Flowers: Their Pollination and Evolution (University of Miami Press, 1966).

    Google Scholar 

  • Neubig, K. M. Systematics of Tribe Sobralieae (Orchidaceae): Phylogenetics, Pollination, Anatomy, and Biogeography of a Group of Neotropical Orchids (University of Florida, 2012).

    Google Scholar 

  • Neubig, K. M. et al. Preliminary molecular phylogenetics of Sobralia and relatives (Orchidaceae; Sobralieae). Lankesteriana 11, 307–317 (2011).

    Google Scholar 

  • Ramírez, S. R., Roubik, D. W., Skov, C. & Pierce, N. E. Phylogeny, diversification patterns and historical biogeography of euglossine orchid bees (Hymenoptera: Apidae). Biol. J. Linn. Soc. 100, 552–572 (2010).

    Google Scholar 

  • Gregory-Wodzicki, K. M. Uplift history of the Central and Northern Andes: A review. Geol. Soc. Am. Bull. 112, 1091–1105 (2000).

    ADS 

    Google Scholar 

  • Sundell, K. E., Saylor, J. E., Lapen, T. J. & Horton, B. K. Implications of variable late Cenozoic surface uplift across the Peruvian central Andes. Sci. Rep. 9, 4877 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mescua, J. F. et al. Middle to late miocene contractional deformation in Costa Rica triggered by plate geodynamics. Tectonics 36, 2936–2949 (2017).

    ADS 

    Google Scholar 

  • Kolanowska, M., Mystkowska, K., Kras, M., Dudek, M. & Konowalik, K. Evolution of the climatic tolerance and postglacial ranges of the most primitive orchids (Apostasioideae) within Sunduland, Wallacea and Sahul. PeerJ 4, e2384 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Arnal, P. et al. The evolution of climate tolerance in conifer-feeding aphids in relation to their host’s climatic niche. Ecol. Evol. 9, 11657–11671 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zangiabadi, S., Zaremaivan, H., Brotons, L., Mostafavi, H. & Ranjbar, H. Using climatic variables alone overestimate climate change impacts on predicting distribution of an endemic species. PLoS ONE 16, e0256918. https://doi.org/10.1371/journal.pone.0256918 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soberón, J. & Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. https://doi.org/10.17161/bi.v2i0.4 (2005).

    Article 

    Google Scholar 

  • Jiménez-Valverde, A., Lobo, J. & Hortal, J. Not as good as they seem: The importance of concepts in species distribution modelling. Divers. Distrib. 14, 885–890. https://doi.org/10.1111/j.1472-4642.2008.00496.x (2008).

    Article 

    Google Scholar 

  • Bonetti, M. F. & Wiens, J. J. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians. Proc. Biol. Sci. 281, 20133229. https://doi.org/10.1098/rspb.2013.3229 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • George, P. M., Walter, E. W. & Yeuh-Lih, Y. Realized versus fundamental niche functions in a model of chaparral response to climatic change. Ecol. Modell. 7, 261–277 (1992).

    Google Scholar 

  • Hijmans, R. J., Schreuder, M., Cruz, J. & Guarino, L. Using GIS to check co-ordinates of genebank accessions. Genet. Resour. Crop Evol. 46, 291–296 (1999).

    Google Scholar 

  • Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In ICML ’04. Proceedings of the Twenty-First International Conference on MACHINE LEARNing, 655–662 (ACM, New York, 2004).

  • Phillips, S. J., Anderson, R. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).

    Google Scholar 

  • Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Google Scholar 

  • Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 222, 1810–1819 (2011).

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  • Brown, J. L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5, 694–700 (2014).

    Google Scholar 

  • Feng, X., Park, D. S., Liang, Y., Pandey, R. & Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. https://doi.org/10.1002/ece3.5555 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hosmer, D. W. & Lemeshow, S. Applied Logistic Regression (Wiley, 2000).

    MATH 

    Google Scholar 

  • Mason, S. J. & Graham, N. E. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves statistical significance and interpretation. Q. J. R. Meteorol. Soc. 128, 2145–2166 (2002).

    ADS 

    Google Scholar 

  • Evangelista, P. H. et al. Modelling invasion for a habitat generalist and a specialist plant species. Divers. Distrib. 14, 808–817 (2008).

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).

  • Warren, D. L. et al. ENMTools 1.0: An R package for comparative ecological biogeography. Ecography 44, 504–511 (2021).

    Google Scholar 

  • Schoener, T. W. The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).

    Google Scholar 

  • Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).

    PubMed 

    Google Scholar 

  • Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).

    Google Scholar 

  • Heibl, C. & Calenge, C. Phyloclim: integrating phylogenetics and climatic niche modeling. R package version 0.9-4. http://CRAN.R-project.org/package=phyloclim (2013).

  • Evans, M. E., Smith, S. A., Flynn, R. S. & Donoghue, M. J. Climate, niche evolution, and diversification of the ‘“bird-cage”’ evening primroses (Oenothera, sections Anogra and Kleinia). Am. Nat. 173, 225–240 (2009).

    PubMed 

    Google Scholar 

  • Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Galtier, N., Gouy, M. & Gautier, C. SeaView and Phylo_win, two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 12, 543–548 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Edgar, R. MUSCLE: Mulitiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nylander, J. A. A. MrModeltest v2 (Uppsala University, 2004).

    Google Scholar 

  • Ronquist, F. & Huelsenbeck, J. P. MRBAYES: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Givnish, T. et al. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2015.1553 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    A paradigm shift in the quantification of wave energy attenuation due to saltmarshes based on their standing biomass

    Ecosystem size-induced environmental fluctuations affect the temporal dynamics of community assembly mechanisms