in

Nitrogen use aggravates bacterial diversity and network complexity responses to temperature

  • Hwang, H. Y. et al. Effect of cover cropping on the net global warming potential of rice paddy soil. Geoderma 292, 49–58 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • IPCC. Climate change 2013: The physical science basis. The Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2013).

    Google Scholar 

  • Cardoso, R. M., Soares, P. M. M., Lima, D. C. A. & Miranda, P. M. A. Mean and extreme temperatures in warming climate: EURO CORDEX and WRF regional climate high-resolution projection for Portugal. Clim. Dyn. 52, 129–157 (2019).

    Article 

    Google Scholar 

  • Ding, T., Gao, H. & Li, W. J. Extreme high-temperature event in southern China in 2016 and the possible role of cross-equatorial flows. Int. J. Climatol. 38, 3579–3594 (2018).

    Article 

    Google Scholar 

  • Escalas, A. et al. Functional diversity and redundancy across fish gut, sediment, and water bacterial communities. Environ. Microbiol. 19, 3268–3282 (2017).

    Article 

    Google Scholar 

  • Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).

    CAS 
    Article 

    Google Scholar 

  • Li, Y. B. et al. Serratia spp. Are responsible for nitrogen fixation fueled by As(III) oxidation, a novel biogeochemical process identified in mine tailings. Environ. Sci. Technol 56, 2033–2043 (2022).

    ADS 
    Article 

    Google Scholar 

  • Jia, M., Gao, Z. W., Gu, H. J., Zhao, C. Y. & Han, G. D. Effects of precipitation change and nitrogen addition on the composition, diversity, and molecular ecological network of soil bacterial communities in a desert steppe. PLoS ONE 16, e0248194. https://doi.org/10.1371/journal.pone.0248194 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waghmode, T. R. et al. Response of nitrifier and denitrifier abundance and microbial community structure to experimental warming in an agricultural ecosystem. Front. Microbiol. 9, 474. https://doi.org/10.3389/fmicb.2018.00474 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, Y. L., Wang, S., Niu, B., Chen, Q. & Zhang, G. Effect of increasing precipitation and warming on microbial community in Tibetan alpine steppe. Environ. Res. 189, 109917. https://doi.org/10.1016/j.envres.2020.109917 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Li, H. et al. Responses of soil bacterial communities to nitrogen deposition and precipitation increment are closely linked with aboveground community variation. Microb. Ecol. 71, 974–989 (2016).

    CAS 
    Article 

    Google Scholar 

  • Wang, H. et al. Experimental warming reduced topsoil carbon content and increased soil bacterial diversity in a subtropical planted forest. Soil Biol. Biochem. 133, 155–164 (2019).

    CAS 
    Article 

    Google Scholar 

  • Haumann, F. A., Gruber, N. & Münnich, M. Sea-Ice Induced Southern Ocean Subsurface Warming and Surface Cooling in a Warming Climate. AGU Advances 1, e2019AV000132. https://doi.org/10.1029/2019AV000132 (2020).

    ADS 
    Article 

    Google Scholar 

  • Ji, F., Wu, Z. H., Huang, J. P. & Chassignet, E. P. Evolution of land surface air temperature trend. Nat. Clim. Chang. 4, 462–466 (2014).

    ADS 
    Article 

    Google Scholar 

  • Sabri, N. S. A., Zakaria, Z., Mohamad, S. E., Jaafar, A. B. & Hara, H. Importance of soil temperature for the growth of temperate crops under a tropical climate and functional role of soil microbial diversity. Microbes Environ. 33, 144–150 (2018).

    Article 

    Google Scholar 

  • McGrady-Steed, J. & Morin, P. T. Biodiversity, density compensation, and the dynamics of populations and functional groups. Ecology 81, 361–373 (2000).

    Article 

    Google Scholar 

  • Jiang, L. Density compensation can cause no effect of biodiversity on ecosystem function. Oikos 116, 324–334 (2007).

    Article 

    Google Scholar 

  • Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538. https://doi.org/10.1038/nrmicro283 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gao, X. X. et al. Revegetation significantly increased the bacterial-fungal interactions in different successional stages of alpine grasslands on the Qinghai-Tibetan Plateau. CATENA 205, 105385. https://doi.org/10.1016/j.catena.2021.105385 (2021).

    CAS 
    Article 

    Google Scholar 

  • Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349. https://doi.org/10.1038/ncomms14349 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).

    Article 

    Google Scholar 

  • Pržulj, N. & Malod-Dognin, N. Network analytics in the age of big data. Science 353, 123–124 (2016).

    ADS 
    Article 

    Google Scholar 

  • Ratzke, C., Barrere, J. M. R. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).

    Article 

    Google Scholar 

  • Fuhrman, J. A. Microbial community structure and its functional implications. Nature 45, 193–199 (2009).

    ADS 
    Article 

    Google Scholar 

  • Zhao, M. X., Cong, J., Cheng, J. M., Qi, Q. & Zhang, Y. G. Soil microbial community assembly and interactions are constrained by nitrogen and phosphorus in broadleaf forests of southern China. Forest 11, 285. https://doi.org/10.3390/f11030285 (2020).

    Article 

    Google Scholar 

  • Wan, X. L. et al. Biogeographic patterns of microbial association networks in paddy soil within Eastern China. Soil Biol. Biochem. 142, 07696. https://doi.org/10.1016/j.soilbio.2019.107696 (2020).

    CAS 
    Article 

    Google Scholar 

  • Yuan, M. M., Guo, X., Wu, L., Zhang, Y. & Zhou, J. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 11, 343–348 (2021).

    ADS 
    Article 

    Google Scholar 

  • Lassaletta, L. et al. Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 11, 225–241 (2014).

    Article 

    Google Scholar 

  • Phoenix, G. K. et al. Impacts of atmospheric nitrogen deposition: Responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob. Change Biol. 18, 1197–1215 (2012).

    ADS 
    Article 

    Google Scholar 

  • Nakaji, T., Fukami, M., Dokiya, Y. & Izuta, T. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees-Struct. Funct. 15, 453–461 (2001).

    CAS 
    Article 

    Google Scholar 

  • Wang, H. Y. et al. Reduction in nitrogen fertilizer use results in increased rice yields and improved environmental protection. Int. J. Agric. Sustain. 15, 681–692 (2017).

    Article 

    Google Scholar 

  • Zhou, X. G. & Wu, F. Z. Land-use conversion from open field to greenhouse cultivation differently affected the diversities and assembly processes of soil abundant and rare fungal communities. Sci. Total Environ. 788, 147751. https://doi.org/10.1016/j.scitotenv.2021.147751 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Guo, H. et al. Long-term nitrogen & phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow. Soil Biol. Biochem. 113, 26–34 (2017).

    CAS 
    Article 

    Google Scholar 

  • Zhang, C. et al. Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in a semiarid grassland. Soil Biol. Biochem. 75, 113–123 (2014).

    CAS 
    Article 

    Google Scholar 

  • Zhang, J. J. et al. Different responses of soil respiration and its components to nitrogen and phosphorus addition in a subtropical secondary forest. For. Ecosyst. 8, 37. https://doi.org/10.1186/s40663-021-00313-z (2021).

    Article 

    Google Scholar 

  • Norse, D. & Ju, X. T. Environmental costs of China’s food security. Agric. Ecosyst. Environ. 209, 5–14 (2015).

    Article 

    Google Scholar 

  • Xu, H. F., Du, H., Zeng, F. P., Song, T. Q. & Peng, W. X. Diminished rhizosphere and bulk soil microbial abundance and diversity across succession stages in Karst area, southwest China. Appl. Soil Ecol. 158, 103799. https://doi.org/10.1016/j.apsoil.2020.103799 (2020).

    Article 

    Google Scholar 

  • Li, Y. B. et al. Arsenic and antimony co-contamination influences on soil microbial community composition and functions: Relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling. Environ. Int. 153, 106522. https://doi.org/10.1016/j.envint.2021.106522 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhou, J. & Fong, J. J. Strong agricultural management effects on soil microbial community in a non-experimental agroecosystem. Appl. Soil Ecol. 165, 103970. https://doi.org/10.1016/j.apsoil.2021.103970 (2021).

    Article 

    Google Scholar 

  • Bárcenas-Moreno, G., Gómez-Brandón, M., Rousk, J. & Bååth, E. Adaptation of soil microbial communities to temperature: Comparison of fungi and bacteria in a laboratory experiment. Glob. Chang. Biol. 15, 2950–2957 (2009).

    ADS 
    Article 

    Google Scholar 

  • Tan, E. H., Zou, W., Zheng, Z., Yan, X. & Kao, S. J. Warming stimulates sediment denitrification at the expense of anaerobic ammonium oxidation. Nat. Clim. Change 10, 349–355 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Supramaniam, Y., Chong, C. W., Silvaraj, S. & Tan, K. P. Effect of short term variation in temperature and water content on the bacterial community in a tropical soil. Appl Soil Ecol. 107, 279–289 (2016).

    Article 

    Google Scholar 

  • Zhu, Y. Z., Li, Y. Y., Zheng, N. G., Chapman, S. J. & Yao, H. Y. Similar but not identical resuscitation trajectories of the soil microbial community based on either DNA or RNA after flooding. Agronomy 10, 502. https://doi.org/10.3390/agronomy10040502 (2020).

    CAS 
    Article 

    Google Scholar 

  • Donhauser, J., Qi, W., Bergk-Pinto, B. & Frey, B. High temperatures enhance the microbial genetic potential to recycle C and N from necromass in high-mountain soils. Glob. Chang. Biol. 27, 1365–1386 (2021).

    ADS 
    Article 

    Google Scholar 

  • Santoyo, G., Hernandez-Pacheco, C., Hernandez-Salmeron, J. & Hernandez-Leon, R. The role of abiotic factors modulating the plant-microbe-soil interactions: Toward sustainable agriculture. A review. Span. J. Agric. Res. 15, e03R01-e11. https://doi.org/10.5424/sjar/2017151-9990 (2017).

    Article 

    Google Scholar 

  • Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936. https://doi.org/10.1038/ncomms7936 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Cardinale, B. J. et al. Corrigendum: Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ma, B., Wang, H., Dsouza, M., Lou, J. & Xu, J. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 10, 1891–1901 (2016).

    CAS 
    Article 

    Google Scholar 

  • Trivedi, C. et al. Losses in microbial functional diversity reduce the rate of key soil processes. Soil Biol. Biochem. 135, 267–274 (2019).

    CAS 
    Article 

    Google Scholar 

  • Melanie, K. et al. Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing. FEMS Microbiol. Ecol. 82, 551–562 (2012).

    Article 

    Google Scholar 

  • Zheng, H. F., Liu, Y., Chen, Y., Zhang, J. & Chen, Q. Short-term warming shifts microbial nutrient limitation without changing the bacterial community structure in an alpine timberline of the eastern Tibetan Plateau. Geoderma 360, 113985. https://doi.org/10.1016/j.geoderma.2019.113985 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Finlay, B. J. & Cooper, J. L. Microbial diversity and ecosystem function. CEH Integrating Fund second progress report to the Director, Centre for Ecology and Hydrology Nov 1996–Sept (1997).

  • Xing, X. Y. et al. Warming shapes nirS– and nosZ-type denitrifier communities and stimulates N2O emission in acidic paddy soil. Appl. Environ. Microbiol. 87, e02965-e3020. https://doi.org/10.1128/AEM.0296520 (2021).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Lin, Y. T., Whitman, W. B., Coleman, D. C., Jien, S. H. & Chiu, C. Y. Soil bacterial communities at the treeline in subtropical alpine areas. CATENA 201, 105205. https://doi.org/10.1016/j.catena.2021.105205 (2021).

    CAS 
    Article 

    Google Scholar 

  • Wang, J. C. et al. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Appl. Soil Ecol. 112, 42–50 (2017).

    Article 

    Google Scholar 

  • Chacón, J. M., Shaw, A. K. & Harcombe, W. R. Increasing growth rate slows adaptation when genotypes compete for diffusing resources. PLoS Comput. Biol. 16, e1007585. https://doi.org/10.1371/journal.pcbi.1007585 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hartley, I. P., Hopkins, D. W., Garnett, M. H., Sommerkorn, M. & Wookey, P. A. Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol. Lett. 11, 1092–1100 (2008).

    Article 

    Google Scholar 

  • Baath, E. Growth rates of bacterial communities in soils at varying pH: A comparison of the thymidine and leucine incorporation techniques. Microb. Ecol. 36, 316–327 (1998).

    CAS 
    Article 

    Google Scholar 

  • Qin, H. L. et al. Soil moisture and activity of nitrite- and nitrous oxide-reducing microbes enhanced nitrous oxide emissions in fallow paddy soils. Biol. Fertil. Soils 56, 53–67 (2020).

    CAS 
    Article 

    Google Scholar 

  • Chen, Z. et al. Impact of long term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microb. Ecol. 60, 850–861 (2010).

    CAS 
    Article 

    Google Scholar 

  • Wei, G. S. et al. Similar drivers but different effects lead to distinct ecological patterns of soil bacterial and archaeal communities. Soil Biol. Biochem. 144, 107759. https://doi.org/10.1016/j.soilbio.2020.107759 (2020).

    CAS 
    Article 

    Google Scholar 

  • Bastian, F., Bouziri, L., Nicolardot, B. & Ranjard, A. L. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol. Biochem. 41, 262–275 (2009).

    CAS 
    Article 

    Google Scholar 

  • Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton University Press, 1968).

    Book 

    Google Scholar 


  • Source: Ecology - nature.com

    A paradigm shift in the quantification of wave energy attenuation due to saltmarshes based on their standing biomass

    Ecosystem size-induced environmental fluctuations affect the temporal dynamics of community assembly mechanisms