in

Optical vegetation indices for monitoring terrestrial ecosystems globally

  • Houborg, R., Fisher, J. B. & Skidmore, A. K. Advances in remote sensing of vegetation function and traits. Int. J. Appl. Earth Obs. Geoinf. 43, 1–6 (2015).

    Google Scholar 

  • Bannari, A., Morin, D., Bonn, F. & Huete, A. A review of vegetation indices. Remote Sens. Rev. 13, 95–120 (1995).

    Article 

    Google Scholar 

  • Gao, X., Huete, A. R., Ni, W. & Miura, T. Optical–biophysical relationships of vegetation spectra without background contamination. Remote Sens. Environ. 74, 609–620 (2000).

    Article 

    Google Scholar 

  • Huete, A. R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295–309 (1988).

    Article 

    Google Scholar 

  • Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 3, e1602244 (2017).

    Article 

    Google Scholar 

  • Gamon, J. A. et al. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc. Natl Acad. Sci. USA 113, 13087–13092 (2016).

    Article 

    Google Scholar 

  • Joiner, J. et al. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 10, 1346 (2018).

    Article 

    Google Scholar 

  • Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article 

    Google Scholar 

  • Tian, F. et al. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 163, 326–340 (2015).

    Article 

    Google Scholar 

  • Fan, X. & Liu, Y. A global study of NDVI difference among moderate-resolution satellite sensors. ISPRS J. Photogramm. Remote Sens. 121, 177–191 (2016).

    Article 

    Google Scholar 

  • AghaKouchak, A. et al. Remote sensing of drought: progress, challenges and opportunities. Rev. Geophys. 53, 452–480 (2015).

    Article 

    Google Scholar 

  • Anyamba, A. & Tucker, in Remote Sensing of Drought: Innovative Monitoring Approaches Ch. 2 (eds Wardlow, B. D., Anderson, M. C. & Verdin, J. P.) (Taylor & Francis, 2012).

  • Veraverbeke, S. et al. Hyperspectral remote sensing of fire: state-of-the-art and future perspectives. Remote Sens. Environ. 216, 105–121 (2018).

    Article 

    Google Scholar 

  • Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).

    Article 

    Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A. & Deering, D. W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 351, 309 (1974).

    Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W. & Harlan, J. C. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFCT Type III Final Report, 371 (NASA, 1974).

  • Gutman, G., Skakun, S. & Gitelson, A. Revisiting the use of red and near-infrared reflectances in vegetation studies and numerical climate models. Sci. Remote Sens. 4, 100025 (2021).

    Article 

    Google Scholar 

  • Jackson, R. D. & Huete, A. R. Interpreting vegetation indices. Prev. Vet. Med. 11, 185–200 (1991).

    Article 

    Google Scholar 

  • Richardson, A. J. & Wiegand, C. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 43, 1541–1552 (1977).

    Google Scholar 

  • Baret, F., Guyot, G. & Major, D. in 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium 1355–1358 (IEEE, 1989).

  • Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H. & Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 48, 119–126 (1994).

    Article 

    Google Scholar 

  • Chen, J. M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 22, 229–242 (1996).

    Article 

    Google Scholar 

  • Brown, L., Chen, J. M., Leblanc, S. G. & Cihlar, J. A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: an image and model analysis. Remote Sens. Environ. 71, 16–25 (2000).

    Article 

    Google Scholar 

  • Pinty, B. & Verstraete, M. GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio 101, 15–20 (1992).

    Article 

    Google Scholar 

  • Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

    Article 

    Google Scholar 

  • Kaufman, Y. J. & Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 30, 261–270 (1992).

    Article 

    Google Scholar 

  • Jiang, Z., Huete, A. R., Didan, K. & Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 112, 3833–3845 (2008).

    Article 

    Google Scholar 

  • Jin, H. & Eklundh, L. A physically based vegetation index for improved monitoring of plant phenology. Remote Sens. Environ. 152, 512–525 (2014).

    Article 

    Google Scholar 

  • Yang, P., van der Tol, C., Campbell, P. K. & Middleton, E. M. Fluorescence Correction Vegetation Index (FCVI): A physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence. Remote Sens. Environ. 240, 111676 (2020).

    Article 

    Google Scholar 

  • Badgley, G., Anderegg, L. D., Berry, J. A. & Field, C. B. Terrestrial gross primary production: Using NIRV to scale from site to globe. Glob. Change Biol. 25, 3731–3740 (2019).

    Article 

    Google Scholar 

  • Camps-Valls, G. et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 7, eabc7447 (2021).

    Article 

    Google Scholar 

  • Roberts, D. A., Roth, K. L. & Perroy, R. L. in Hyperspectral Remote Sensing of Vegetation Ch. 14 (eds Thenkabail, P. S., Lyon, J. G. & Huete, A.) (CRC, 2016).

  • Gitelson, A. A., Vina, A., Ciganda, V., Rundquist, D. C. & Arkebauer, T. J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 32, L08403 (2005).

    Article 

    Google Scholar 

  • Gitelson, A. & Merzlyak, M. N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 143, 286–292 (1994).

    Article 

    Google Scholar 

  • Dash, J. & Curran, P. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 25, 5403–5413 (2004).

    Article 

    Google Scholar 

  • Penuelas, J., Baret, F. & Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31, 221–230 (1995).

    Google Scholar 

  • Peñuelas, J., Gamon, J., Fredeen, A., Merino, J. & Field, C. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 48, 135–146 (1994).

    Article 

    Google Scholar 

  • Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B. & Rakitin, V. Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 106, 135–141 (1999).

    Article 

    Google Scholar 

  • Gitelson, A. A., Merzlyak, M. N. & Chivkunova, O. B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 74, 38–45 (2001).

    Article 

    Google Scholar 

  • van den Berg, A. K. & Perkins, T. D. Nondestructive estimation of anthocyanin content in autumn sugar maple leaves. HortScience 40, 685–686 (2005).

    Article 

    Google Scholar 

  • Gamon, J. & Surfus, J. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 143, 105–117 (1999).

    Article 

    Google Scholar 

  • Gao, B.-C. NDWI — a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266 (1996).

    Article 

    Google Scholar 

  • Xiao, X., Boles, S., Liu, J., Zhuang, D. & Liu, M. Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sens. Environ. 82, 335–348 (2002).

    Article 

    Google Scholar 

  • Xiao, X. et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 89, 519–534 (2004).

    Article 

    Google Scholar 

  • Yilmaz, M. T., Hunt, E. R. Jr & Jackson, T. J. Remote sensing of vegetation water content from equivalent water thickness using satellite imagery. Remote Sens. Environ. 112, 2514–2522 (2008).

    Article 

    Google Scholar 

  • Cheng, Y.-B., Ustin, S. L., Riaño, D. & Vanderbilt, V. C. Water content estimation from hyperspectral images and MODIS indexes in Southeastern Arizona. Remote Sens. Environ. 112, 363–374 (2008).

    Article 

    Google Scholar 

  • Serrano, L., Penuelas, J. & Ustin, S. L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: decomposing biochemical from structural signals. Remote Sens. Environ. 81, 355–364 (2002).

    Article 

    Google Scholar 

  • Filella, I. et al. PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. Int. J. Remote Sens. 30, 4443–4455 (2009).

    Article 

    Google Scholar 

  • Gamon, J., Penuelas, J. & Field, C. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 41, 35–44 (1992).

    Article 

    Google Scholar 

  • Cheng, R. et al. Decomposing reflectance spectra to track gross primary production in a subalpine evergreen forest. Biogeosciences 17, 4523–4544 (2020).

    Article 

    Google Scholar 

  • Seyednasrollah, B. et al. Seasonal variation in the canopy color of temperate evergreen conifer forests. New Phytol. 229, 2586–2600 (2021).

    Article 

    Google Scholar 

  • Merton, R. in Proceedings of the Seventh Annual JPL Airborne Earth Science Workshop 12–16 (NASA, 2004).

  • Naidu, R. A., Perry, E. M., Pierce, F. J. & Mekuria, T. The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Comput. Electron. Agric. 66, 38–45 (2009).

    Article 

    Google Scholar 

  • Chen, Y. et al. Generation and evaluation of LAI and FPAR products from Himawari-8 Advanced Himawari imager (AHI) data. Remote Sens. 11, 1517 (2019).

    Article 

    Google Scholar 

  • Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948 (2013).

    Article 

    Google Scholar 

  • Liu, Y., Liu, R. & Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res. 117, G04003 (2012).

    Google Scholar 

  • Croft, H. et al. The global distribution of leaf chlorophyll content. Remote Sens. Environ. 236, 111479 (2020).

    Article 

    Google Scholar 

  • Bayat, B. et al. Toward operational validation systems for global satellite-based terrestrial essential climate variables. Int. J. Appl. Earth Obs. Geoinf. 95, 102240 (2021).

    Google Scholar 

  • Cui, Y., Song, L. & Fan, W. Generation of spatio-temporally continuous evapotranspiration and its components by coupling a two-source energy balance model and a deep neural network over the Heihe River Basin. J. Hydrol. 597, 126176 (2021).

    Article 

    Google Scholar 

  • Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M. & Notarnicola, C. Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sens. 7, 16398–16421 (2015).

    Article 

    Google Scholar 

  • Gitelson, A. A. et al. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 30, 1248 (2003).

    Article 

    Google Scholar 

  • Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).

    Article 

    Google Scholar 

  • Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    Article 

    Google Scholar 

  • Morton, D. C. et al. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 506, 221–224 (2014).

    Article 

    Google Scholar 

  • Jiang, Z. et al. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 101, 366–378 (2006).

    Article 

    Google Scholar 

  • Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J. & Strachan, I. B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90, 337–352 (2004).

    Article 

    Google Scholar 

  • Wu, C., Wang, L., Niu, Z., Gao, S. & Wu, M. Nondestructive estimation of canopy chlorophyll content using Hyperion and Landsat/TM images. Int. J. Remote Sens. 31, 2159–2167 (2010).

    Article 

    Google Scholar 

  • Wang, R. & Gamon, J. A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 231, 111218 (2019).

    Article 

    Google Scholar 

  • Ustin, S. L. & Gamon, J. A. Remote sensing of plant functional types. New Phytol. 186, 795–816 (2010).

    Article 

    Google Scholar 

  • Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl Acad. Sci. USA 111, 16041–16046 (2014).

    Article 

    Google Scholar 

  • Zhang, Y., Commane, R., Zhou, S., Williams, A. P. & Gentine, P. Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nat. Clim. Change 10, 739–743 (2020).

    Article 

    Google Scholar 

  • Weber, M. et al. Exploring the use of DSCOVR/EPIC satellite observations to monitor vegetation phenology. Remote Sens. 12, 2384 (2020).

    Article 

    Google Scholar 

  • Ganguly, S., Friedl, M. A., Tan, B., Zhang, X. & Verma, M. Land surface phenology from MODIS: characterization of the Collection 5 global land cover dynamics product. Remote Sens. Environ. 114, 1805–1816 (2010).

    Article 

    Google Scholar 

  • Gray, J., Sulla-Menashe, D. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover Dynamics Product (MCD12Q2) (NASA, 2019).

  • Wang, S., Zhang, Y., Ju, W., Qiu, B. & Zhang, Z. Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data. Sci. Total Environ. 755, 142569 (2021).

    Article 

    Google Scholar 

  • Tian, F. et al. Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe. Remote Sens. Environ. 260, 112456 (2021).

    Article 

    Google Scholar 

  • Yin, G., Verger, A., Filella, I., Descals, A. & Peñuelas, J. Divergent estimates of forest photosynthetic phenology using structural and physiological vegetation indices. Geophys. Res. Lett. 47, e2020GL089167 (2020).

    Article 

    Google Scholar 

  • Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).

    Article 

    Google Scholar 

  • Samanta, A. et al. Amazon forests did not green-up during the 2005 drought. Geophys. Res. Lett. 37, L05401 (2010).

    Article 

    Google Scholar 

  • Shi, Y., Huang, W., Luo, J., Huang, L. & Zhou, X. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis. Comput. Electron. Agric. 141, 171–180 (2017).

    Article 

    Google Scholar 

  • Zhang, Z., Liu, M., Liu, X. & Zhou, G. A new vegetation index based on multitemporal Sentinel-2 images for discriminating heavy metal stress levels in rice. Sensors 18, 2172 (2018).

    Article 

    Google Scholar 

  • Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E. & Tucker III, C. J. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations (Springer, 2015).

  • Potter, C. S. et al. Terrestrial ecosystem production: a process model based on global satellite and surface data. Glob. Biogeochem. Cycles 7, 811–841 (1993).

    Article 

    Google Scholar 

  • Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).

    Article 

    Google Scholar 

  • Yuan, W. et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric. For. Meteorol. 143, 189–207 (2007).

    Article 

    Google Scholar 

  • Chen, M. et al. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data. Biogeosciences 8, 2665–2688 (2011).

    Article 

    Google Scholar 

  • Xiao, J. et al. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sens. Environ. 114, 576–591 (2010).

    Article 

    Google Scholar 

  • Jiang, C., Guan, K., Wu, G., Peng, B. & Wang, S. A daily, 250 m, and real-time gross primary productivity product (2000–present) covering the contiguous United States. Earth Syst. Sci. Data Discuss. 2020, 1–28 (2020).

    Google Scholar 

  • Schubert, P. et al. Modeling GPP in the Nordic forest landscape with MODIS time series data — comparison with the MODIS GPP product. Remote Sens. Environ. 126, 136–147 (2012).

    Article 

    Google Scholar 

  • Zeng, Y. et al. A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence. Remote Sens. Environ. 232, 111209 (2019).

    Article 

    Google Scholar 

  • Baldocchi, D. D. et al. Outgoing near infrared radiation from vegetation scales with canopy photosynthesis across a spectrum of function, structure, physiological capacity and weather. J. Geophys. Res. 125, e2019JG005534 (2020).

    Google Scholar 

  • Dechant, B. et al. Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sens. Environ. 241, 111733 (2020).

    Article 

    Google Scholar 

  • Rahman, A. F., Gamon, J. A., Fuentes, D. A., Roberts, D. A. & Prentiss, D. Modeling spatially distributed ecosystem flux of boreal forest using hyperspectral indices from AVIRIS imagery. J. Geophys. Res. Atmos. 106, 33579–33591 (2001).

    Article 

    Google Scholar 

  • Zhu, Z. et al. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 373, eabg5673 (2021).

    Article 

    Google Scholar 

  • Doughty, R. et al. Small anomalies in dry-season greenness and chlorophyll fluorescence for Amazon moist tropical forests during El Niño and La Niña. Remote Sens. Environ. 253, 112196 (2021).

    Article 

    Google Scholar 

  • Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 6, eabb8508 (2020).

    Article 

    Google Scholar 

  • Huang, N., He, J.-S. & Niu, Z. Estimating the spatial pattern of soil respiration in Tibetan alpine grasslands using Landsat TM images and MODIS data. Ecol. Indic. 26, 117–125 (2013).

    Article 

    Google Scholar 

  • Neale, C. M., Gonzalez-Dugo, M. P., Serrano-Perez, A., Campos, I. & Mateos, L. Cotton canopy reflectance under variable solar zenith angles: implications of use in evapotranspiration models. Hydrol. Process. 35, e14162 (2021).

    Article 

    Google Scholar 

  • Chen, J. M. & Liu, J. Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote Sens. Environ. 237, 111594 (2020).

    Article 

    Google Scholar 

  • Glenn, E. P., Huete, A. R., Nagler, P. L. & Nelson, S. G. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape. Sensors 8, 2136–2160 (2008).

    Article 

    Google Scholar 

  • Cui, Y., Jia, L. & Fan, W. Estimation of actual evapotranspiration and its components in an irrigated area by integrating the Shuttleworth-Wallace and surface temperature-vegetation index schemes using the particle swarm optimization algorithm. Agric. For. Meteorol. 307, 108488 (2021).

    Article 

    Google Scholar 

  • Glenn, E. P., Neale, C. M., Hunsaker, D. J. & Nagler, P. L. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrol. Process. 25, 4050–4062 (2011).

    Article 

    Google Scholar 

  • French, A. N. et al. Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest. Agric. Water Manag. 239, 106266 (2020).

    Article 

    Google Scholar 

  • Lotsch, A., Friedl, M. A., Anderson, B. T. & Tucker, C. J. Coupled vegetation-precipitation variability observed from satellite and climate records. Geophys. Res. Lett. 30, 1774 (2003).

    Article 

    Google Scholar 

  • Nezlin, N. P., Kostianoy, A. G. & Li, B.-L. Inter-annual variability and interaction of remote-sensed vegetation index and atmospheric precipitation in the Aral Sea region. J. Arid Environ. 62, 677–700 (2005).

    Article 

    Google Scholar 

  • Notaro, M., Liu, Z. & Williams, J. W. Observed vegetation–climate feedbacks in the United States. J. Clim. 19, 763–786 (2006).

    Article 

    Google Scholar 

  • Fensholt, R. & Proud, S. R. Evaluation of earth observation based global long term vegetation trends — Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 119, 131–147 (2012).

    Article 

    Google Scholar 

  • Trishchenko, A. P., Cihlar, J. & Li, Z. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Remote Sens. Environ. 81, 1–18 (2002).

    Article 

    Google Scholar 

  • Ustin, S. L. & Middleton, E. M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 10, 1 (2021).

    Article 

    Google Scholar 

  • Wang, D. et al. Impact of sensor degradation on the MODIS NDVI time series. Remote Sens. Environ. 119, 55–61 (2012).

    Article 

    Google Scholar 

  • Zhang, Y., Song, C., Band, L. E., Sun, G. & Li, J. Reanalysis of global terrestrial vegetation trends from MODIS products: browning or greening? Remote Sens. Environ. 191, 145–155 (2017).

    Article 

    Google Scholar 

  • Bhatt, R. et al. A consistent AVHRR visible calibration record based on multiple methods applicable for the NOAA degrading orbits. Part I: Methodology. J. Atmos. Ocean. Technol. 33, 2499–2515 (2016).

    Article 

    Google Scholar 

  • Frankenberg, C., Yin, Y., Byrne, B., He, L. & Gentine, P. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 373, eabg2947 (2021).

    Article 

    Google Scholar 

  • Los, S. O. Estimation of the ratio of sensor degradation between NOAA AVHRR channels 1 and 2 from monthly NDVI composites. IEEE Trans. Geosci. Remote Sens. 36, 206–213 (1998).

    Article 

    Google Scholar 

  • Jiang, C. et al. Inconsistencies of interannual variability and trends in long-term satellite leaf area index products. Glob. Change Biol. 23, 4133–4146 (2017).

    Article 

    Google Scholar 

  • de Beurs, K. M. & Henebry, G. M. Trend analysis of the Pathfinder AVHRR Land (PAL) NDVI data for the deserts of Central Asia. IEEE Geosci. Remote Sens. Lett. 1, 282–286 (2004).

    Article 

    Google Scholar 

  • Wang, Z. et al. Large discrepancies of global greening: indication of multi-source remote sensing data. Global Ecol. Conserv. 34, e02016 (2022).

    Article 

    Google Scholar 

  • Miura, T., Huete, A. R. & Yoshioka, H. Evaluation of sensor calibration uncertainties on vegetation indices for MODIS. IEEE Trans Geosci. Remote Sens. 38, 1399–1409 (2000).

    Article 

    Google Scholar 

  • Lyapustin, A. et al. Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmos. Meas. Tech. 7, 4353–4365 (2014).

    Article 

    Google Scholar 

  • Buchhorn, M., Raynolds, M. K. & Walker, D. A. Influence of BRDF on NDVI and biomass estimations of Alaska Arctic tundra. Environ. Res. Lett. 11, 125002 (2016).

    Article 

    Google Scholar 

  • Fensholt, R., Sandholt, I., Proud, S. R., Stisen, S. & Rasmussen, M. O. Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geostationary data. Int. J. Remote Sens. 31, 6163–6187 (2010).

    Article 

    Google Scholar 

  • Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016).

    Article 

    Google Scholar 

  • Lyapustin, A. I. et al. Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction. Remote Sens. Environ. 127, 385–393 (2012).

    Article 

    Google Scholar 

  • Norris, J. R. & Walker, J. J. Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States. Remote Sens. Environ. 249, 112013 (2020).

    Article 

    Google Scholar 

  • Roy, D. P. et al. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sens. Environ. 176, 255–271 (2016).

    Article 

    Google Scholar 

  • Schaaf, C. B. et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 83, 135–148 (2002).

    Article 

    Google Scholar 

  • Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series) (Univ. Arizona, 2015).

  • Wang, Z., Schaaf, C. B., Sun, Q., Shuai, Y. & Román, M. O. Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) products. Remote Sens. Environ. 207, 50–64 (2018).

    Article 

    Google Scholar 

  • Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612 (2007).

    Article 

    Google Scholar 

  • Vargas, M., Miura, T., Shabanov, N. & Kato, A. An initial assessment of Suomi NPP VIIRS vegetation index EDR. J. Geophys. Res. Atmos. 118, 12,301–12,316 (2013).

    Article 

    Google Scholar 

  • Kobayashi, H. & Dye, D. G. Atmospheric conditions for monitoring the long-term vegetation dynamics in the Amazon using normalized difference vegetation index. Remote Sens. Environ. 97, 519–525 (2005).

    Article 

    Google Scholar 

  • Jiang, C. & Fang, H. GSV: a general model for hyperspectral soil reflectance simulation. Int. J. Appl. Earth Obs. Geoinf. 83, 101932 (2019).

    Google Scholar 

  • Verrelst, J., Schaepman, M. E., Malenovský, Z. & Clevers, J. G. Effects of woody elements on simulated canopy reflectance: Implications for forest chlorophyll content retrieval. Remote Sens. Environ. 114, 647–656 (2010).

    Article 

    Google Scholar 

  • Huete, A. & Tucker, C. Investigation of soil influences in AVHRR red and near-infrared vegetation index imagery. Int. J. Remote Sens. 12, 1223–1242 (1991).

    Article 

    Google Scholar 

  • Farrar, T., Nicholson, S. & Lare, A. The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. II. NDVI response to soil oisture. Remote Sens. Environ. 50, 121–133 (1994).

    Article 

    Google Scholar 

  • Huete, A. & Warrick, A. Assessment of vegetation and soil water regimes in partial canopies with optical remotely sensed data. Remote Sens. Environ. 32, 155–167 (1990).

    Article 

    Google Scholar 

  • Wang, C. et al. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sens. Environ. 196, 1–12 (2017).

    Article 

    Google Scholar 

  • Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).

    Article 

    Google Scholar 

  • Shen, M. et al. No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proc. Natl Acad. Sci. 110, E2329 (2013).

    Google Scholar 

  • Hao, D. et al. Modeling anisotropic reflectance over composite sloping terrain. IEEE Trans. Geosci. Remote Sens. 56, 3903–3923 (2018).

    Article 

    Google Scholar 

  • Matsushita, B., Yang, W., Chen, J., Onda, Y. & Qiu, G. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors 7, 2636–2651 (2007).

    Article 

    Google Scholar 

  • Wen, J. et al. Characterizing land surface anisotropic reflectance over rugged terrain: a review of concepts and recent developments. Remote Sens. 10, 370 (2018).

    Article 

    Google Scholar 

  • Friedl, M. A., Davis, F. W., Michaelsen, J. & Moritz, M. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: an analysis using a scene simulation model and data from FIFE. Remote Sens. Environ. 54, 233–246 (1995).

    Article 

    Google Scholar 

  • Tan, B. et al. The impact of gridding artifacts on the local spatial properties of MODIS data: implications for validation, compositing, and band-to-band registration across resolutions. Remote Sens. Environ. 105, 98–114 (2006).

    Article 

    Google Scholar 

  • Wolfe, R. E. et al. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ. 83, 31–49 (2002).

    Article 

    Google Scholar 

  • Ferreira, M. P. et al. Retrieving structural and chemical properties of individual tree crowns in a highly diverse tropical forest with 3D radiative transfer modeling and imaging spectroscopy. Remote Sens. Environ. 211, 276–291 (2018).

    Article 

    Google Scholar 

  • Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33, L06405 (2006).

    Article 

    Google Scholar 

  • Herrmann, S. M. & Tappan, G. G. Vegetation impoverishment despite greening: a case study from central Senegal. J. Arid Environ. 90, 55–66 (2013).

    Article 

    Google Scholar 

  • Wang, X. et al. No consistent evidence for advancing or delaying trends in spring phenology on the Tibetan Plateau. J. Geophys. Res. Biogeosci. 122, 3288–3305 (2017).

    Article 

    Google Scholar 

  • Donnelly, A., Yu, R. & Liu, L. Comparing in situ spring phenology and satellite-derived start of season at rural and urban sites in Ireland. Int. J. Remote Sens. 42, 7821–7841 (2021).

    Article 

    Google Scholar 

  • Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).

    Article 

    Google Scholar 

  • Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).

    Article 

    Google Scholar 

  • Chen, X. & Yang, Y. Observed earlier start of the growing season from middle to high latitudes across the Northern Hemisphere snow-covered landmass for the period 2001–2014. Environ. Res. Lett. 15, 034042 (2020).

    Article 

    Google Scholar 

  • Alatorre, L. C. et al. Temporal changes of NDVI for qualitative environmental assessment of mangroves: shrimp farming impact on the health decline of the arid mangroves in the Gulf of California (1990–2010). J. Arid Environ. 125, 98–109 (2016).

    Article 

    Google Scholar 

  • Jacquemoud, S. & Baret, F. PROSPECT: a model of leaf optical properties spectra. Remote Sens. Environ. 34, 75–91 (1990).

    Article 

    Google Scholar 

  • Wu, S. et al. Quantifying leaf optical properties with spectral invariants theory. Remote Sens. Environ. 253, 112131 (2021).

    Article 

    Google Scholar 

  • Wang, Z. et al. Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sens. Environ. 221, 405–416 (2019).

    Article 

    Google Scholar 

  • Van Leeuwen, W. & Huete, A. Effects of standing litter on the biophysical interpretation of plant canopies with spectral indices. Remote Sens. Environ. 55, 123–138 (1996).

    Article 

    Google Scholar 

  • Dechant, B. et al. NIRvP: a robust structural proxy for sun-induced chlorophyll fluorescence and photosynthesis across scales. Remote Sens. Environ. 268, 112763 (2022).

    Article 

    Google Scholar 

  • Zeng, Y. et al. Estimating near-infrared reflectance of vegetation from hyperspectral data. Remote Sens. Environ. 267, 112723 (2021).

    Article 

    Google Scholar 

  • Claverie, M. et al. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 219, 145–161 (2018).

    Article 

    Google Scholar 

  • Hantson, S. & Chuvieco, E. Evaluation of different topographic correction methods for Landsat imagery. Int. J. Appl. Earth Obs. Geoinf. 13, 691–700 (2011).

    Google Scholar 

  • Zhang, H. K. et al. Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sens. Environ. 215, 482–494 (2018).

    Article 

    Google Scholar 

  • Gao, F., Masek, J., Schwaller, M. & Hall, F. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 44, 2207–2218 (2006).

    Article 

    Google Scholar 

  • Zhu, X. et al. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 172, 165–177 (2016).

    Article 

    Google Scholar 

  • Luo, Y., Guan, K. & Peng, J. STAIR: A generic and fully-automated method to fuse multiple sources of optical satellite data to generate a high-resolution, daily and cloud-/gap-free surface reflectance product. Remote Sens. Environ. 214, 87–99 (2018).

    Article 

    Google Scholar 

  • Houborg, R. & McCabe, M. F. Daily retrieval of NDVI and LAI at 3 m resolution via the fusion of CubeSat, Landsat, and MODIS data. Remote Sens. 10, 890 (2018).

    Article 

    Google Scholar 

  • Kimm, H. et al. Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the US Corn Belt using Planet Labs CubeSat and STAIR fusion data. Remote Sens. Environ. 239, 111615 (2020).

    Article 

    Google Scholar 

  • Kong, J. et al. Evaluation of four image fusion NDVI products against in-situ spectral-measurements over a heterogeneous rice paddy landscape. Agric. For. Meteorol. 297, 108255 (2021).

    Article 

    Google Scholar 

  • Köhler, P. et al. Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first results and intersensor comparison to OCO-2. Geophys. Res. Lett. 45, 10,456–10,463 (2018).

    Article 

    Google Scholar 

  • Sun, Y. et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358, eaam5747 (2017).

    Article 

    Google Scholar 

  • Joiner, J., Yoshida, Y., Vasilkov, A. & Middleton, E. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8, 637–651 (2011).

    Article 

    Google Scholar 

  • Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, L17706 (2011).

    Article 

    Google Scholar 

  • Qiu, B., Ge, J., Guo, W., Pitman, A. J. & Mu, M. Responses of Australian dryland vegetation to the 2019 heat wave at a subdaily scale. Geophys. Res. Lett. 47, e2019GL086569 (2020).

    Google Scholar 

  • Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA 116, 11640–11645 (2019).

    Article 

    Google Scholar 

  • Guanter, L. et al. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence. Atmos. Meas. Tech. 8, 1337–1352 (2015).

    Article 

    Google Scholar 

  • Knyazikhin, Y. et al. Hyperspectral remote sensing of foliar nitrogen content. Proc. Natl Acad. Sci. USA 110, E185–E192 (2013).

    Google Scholar 

  • Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).

    Article 

    Google Scholar 

  • Zeng, Y. et al. Combining near-infrared radiance of vegetation and fluorescence spectroscopy to detect effects of abiotic changes and stresses. Remote Sens. Environ. 270, 112856 (2022).

    Article 

    Google Scholar 

  • Shi, J. et al. Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E. Remote Sens. Environ. 112, 4285–4300 (2008).

    Article 

    Google Scholar 

  • Talebiesfandarani, S. et al. Microwave vegetation index from multi-angular observations and its application in vegetation properties retrieval: theoretical modelling. Remote Sens. 11, 730 (2019).

    Article 

    Google Scholar 

  • Wigneron, J.-P. et al. SMOS-IC data record of soil moisture and L-VOD: historical development, applications and perspectives. Remote Sens. Environ. 254, 112238 (2021).

    Article 

    Google Scholar 

  • Zhang, Y., Zhou, S., Gentine, P. & Xiao, X. Can vegetation optical depth reflect changes in leaf water potential during soil moisture dry-down events? Remote Sens. Environ. 234, 111451 (2019).

    Article 

    Google Scholar 

  • Frappart, F. et al. Global monitoring of the vegetation dynamics from the vegetation optical depth (VOD): a review. Remote Sens. 12, 2915 (2020).

    Article 

    Google Scholar 

  • Xiao, J., Fisher, J. B., Hashimoto, H., Ichii, K. & Parazoo, N. C. Emerging satellite observations for diurnal cycling of ecosystem processes. Nat. Plants 7, 877–887 (2021).

    Article 

    Google Scholar 

  • Hashimoto, H. et al. New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nat. Commun. 12, 684 (2021).

    Article 

    Google Scholar 

  • Somkuti, P. et al. Solar-induced chlorophyll fluorescence from the Geostationary Carbon Cycle Observatory (GeoCarb): An extensive simulation study. Remote Sens. Environ. 263, 112565 (2021).

    Article 

    Google Scholar 

  • Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article 

    Google Scholar 

  • Richardson, A. D., Braswell, B. H., Hollinger, D. Y., Jenkins, J. P. & Ollinger, S. V. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol. Appl. 19, 1417–1428 (2009).

    Article 

    Google Scholar 

  • Daughtry, C. S. Discriminating crop residues from soil by shortwave infrared reflectance. Agron. J. 93, 125–131 (2001).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Municipal biowaste treatment plants contribute to the contamination of the environment with residues of biodegradable plastics with putative higher persistence potential

    Ploidy dynamics in aphid host cells harboring bacterial symbionts