in

Phylogenetic relationships of sleeper gobies (Eleotridae: Gobiiformes: Gobioidei), with comments on the position of the miniature genus Microphilypnus

  • Jordan, D. S. A classification of fishes including families and genera as far as know. Stanford University Publications. Bio. Sci. 3, 79–243. https://doi.org/10.5962/bhl.title.161386 (1923).

    Article 

    Google Scholar 

  • Akihito, et al. Evolutionary aspects of gobioid fishes based on an analysis of mitochondrial cytochrome b genes. Gene 259, 5–15 (2000).

    Article 
    CAS 

    Google Scholar 

  • Wang, H.-Y., Tsai, M.-P., Dean, J. & Lee, S.-C. Molecular phylogeny of gobioid Wshes (Perciformes: Gobioidei) based on mitochondrial 12S rRNA sequences. Mol. Phylogenet. Evol. 20, 390–408. https://doi.org/10.1016/j.ympev.2005.05.004 (2001).

    Article 
    CAS 

    Google Scholar 

  • Nelson, J. S., Grande, T. C. & Wilson, M. V. Fishes of the World (Wiley, 2016).

    Book 

    Google Scholar 

  • Fricke, R., Eschmeyer, W. N. & Van der Laan, R. Eschmeyer’s Catalog of fishes: Genera, Species, references. (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp) (Accessed 15 June 2022).

  • Guimarães-Costa, A. et al. Molecular evidence of two new species of Eleotris (Gobiiformes: Eleotridae) in the western Atlantic. Mol. Phylogenet. Evol. 98, 52–56. https://doi.org/10.1016/j.ympev.2016.01.014 (2016).

    Article 

    Google Scholar 

  • Thacker, C. E. & Hardman, M. A. Molecular phylogeny of basal gobioid fishes: Rhyacichthyidae, Odontobutidae, Xenisthmidae, Eleotridae (Teleostei: Perciformes: Gobioidei). Mol. Phylogenet. Evol. 37, 858–887. https://doi.org/10.1016/j.ympev.2005.05.004 (2005).

    Article 
    CAS 

    Google Scholar 

  • Nordlie, F. G. Life-history characteristics of eleotrid fishes of the western hemisphere, and perils of life in a vanishing environment. Rev. Fish Biol. Fisher. 22(1), 189–224. https://doi.org/10.1007/s11160-011-9229-3 (2012).

    Article 

    Google Scholar 

  • Berra, T. M. Freshwater Fish Distribution (Academic Press, 2001).

    Google Scholar 

  • Graham, J. B. Air-Breathing Fishes: Evolution, Diversity, and Adaptation (Academic Press, 1997).

    Book 

    Google Scholar 

  • Thacker, C. E. Phylogeny of Gobioidea and its placement within Acanthomorpha, with a new classification and investigation of diversification and character evolution. Copeia 1, 93–104. https://doi.org/10.1643/CI-08-004 (2009).

    Article 

    Google Scholar 

  • Chakrabarty, P., Davis, M. P. & Sparks, J. S. The first record of a trans-oceanic sister-group relationship between obligate vertebrate troglobites. PLoS One 7, e44083. https://doi.org/10.1371/journal.pone.0044083 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Agorreta, A. et al. Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Mol. Phylogenet. Evol. 69, 619–633. https://doi.org/10.1016/j.ympev.2013.07.017 (2013).

    Article 

    Google Scholar 

  • McCraney, W. T., Thacker, C. E. & Alfaro, M. E. Supermatrix phylogeny resolves goby lineages and reveals unstable root of Gobiaria. Mol. Phylogenet. Evol. 151, 106862. https://doi.org/10.1016/j.ympev.2020.106862 (2020).

    Article 

    Google Scholar 

  • Karl, S. A. & Avise, J. C. Balancing selection at allozyme loci in oysters: Implications from nuclear RFLPs. Science 256, 100. https://doi.org/10.1126/science.1348870 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hey, J. & Machado, C. A. The study of structured populations—New hope for a difficult and divided science. Nat. Rev. Genet. 4, 535–543. https://doi.org/10.1038/nrg1112 (2003).

    Article 
    CAS 

    Google Scholar 

  • Castroviejo-Fisher, S., Guayasamin, J. M., Gonzalez-Voyer, A. & Vilà, C. Neotropical diversification seen through glassfrogs. J. Biogeogr. 41, 66–80. https://doi.org/10.1111/jbi.12208 (2014).

    Article 

    Google Scholar 

  • Dornburg, A., Townsend, J. P., Friedman, M. & Near, T. J. Phylogenetic informativeness reconciles ray-finned fish molecular divergence times. BMC Evol. Biol. 14, 169. https://doi.org/10.1186/s12862-014-0169-0 (2014).

    Article 

    Google Scholar 

  • Hundt, P. J., Iglésias, S. P., Hoey, A. S. & Simons, A. M. A multilocus molecular phylogeny of combtooth blennies (Percomorpha: Blennioidei: Blenniidae): Multiple invasions of intertidal habitats. Mol. Phylogenet. Evol. 70, 47–56. https://doi.org/10.1016/j.ympev.2013.09.001 (2014).

    Article 

    Google Scholar 

  • Olave, M., Avila, L. J., Sites, J. W. & Morando, M. Multilocus phylogeny of the widely distributed South American lizard clade Eulaemus (Liolaemini, Liolaemus). Zool. Scr. 43, 323–337. https://doi.org/10.1111/zsc.12053 (2014).

    Article 

    Google Scholar 

  • Meyer, B. S., Matschiner, M. & Salzburger, W. A tribal level phylogeny of Lake Tanganyika cichlid fishes based on a genomic multi-marker approach. Mol. Phylogenet. Evol. 83, 56–71. https://doi.org/10.1016/j.ympev.2014.10.009 (2015).

    Article 

    Google Scholar 

  • Jønsson, K. A. et al. A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides). Mol. Phylogenet. Evol. 94, 87–94. https://doi.org/10.1016/j.ympev.2015.08.020 (2016).

    Article 

    Google Scholar 

  • Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475(7357), 493–496. https://doi.org/10.1038/nature10231 (2011).

    Article 
    CAS 

    Google Scholar 

  • Frantz, R. S. X-efficiency: Theory, Evidence and Applications Vol. 2 (Springer Science & Business Media, 2013).

    Google Scholar 

  • Bessa-Silva, A. et al. The roles of vicariance and dispersal in the differentiation of two species of the Rhinella marina species complex. Mol. Phylogenet. Evol. 145, 106723. https://doi.org/10.1016/j.ympev.2019.106723 (2020).

    Article 

    Google Scholar 

  • Leutenegger, W. Maternal-fetal weight relationships in primates. Folia Primatol. 20(4), 280–293. https://doi.org/10.1159/000155580 (1973).

    Article 
    CAS 

    Google Scholar 

  • Yeh, J. The effect of miniaturized body size on skeletal morphology in frogs. Evolution 56(3), 628–641. https://doi.org/10.1111/j.0014-3820.2002.tb01372.x (2002).

    Article 

    Google Scholar 

  • Daza, J. D. et al. An enigmatic miniaturized and attenuate whole lizard from the Mid-Cretaceous amber of Myanmar. Breviora 563(1), 1–18. https://doi.org/10.3099/MCZ49.1 (2018).

    Article 

    Google Scholar 

  • Hanken, J. & Wake, D. B. Miniaturization of body size: Organismal consequences and evolutionary significance. Annu. Rev. Ecol. Evol. Syst. 24(1), 501–519. https://doi.org/10.1146/annurev.es.24.110193.002441 (1993).

    Article 

    Google Scholar 

  • Britz, R. & Conway, K. W. Osteology of Paedocypris, a miniature and highly developmentally truncated fish (Teleostei: Ostariophysi: Cyprinidae). J. Morphol. 270(4), 389–412. https://doi.org/10.1002/jmor.10698 (2009).

    Article 
    CAS 

    Google Scholar 

  • Britz, R., Conway, K. W. & Ruber, L. Spectacular morphological novelty in a miniature cyprinid fish, Danionella dracula n. sp.. Proc. R. Soc. Lond. 276(1665), 2179–2186. https://doi.org/10.1098/rspb.2009.0141 (2009).

    Article 

    Google Scholar 

  • Weitzman, S. H. & Vari, R. P. Miniaturization in South American freshwater fishes; an overview and discussion. Proc. Biol. Soc. Wash. 101(2), 444–465 (1988).

    Google Scholar 

  • Toledo-Piza, M., Mattox, G. M. & Britz, R. Priocharax nanus, a new miniature characid from the rio Negro, Amazon basin (Ostariophysi: Characiformes), with an updated list of miniature Neotropical freshwater fishes. Neotrop. Ichthyol. 12(2), 229–246. https://doi.org/10.1590/1982-0224-20130171 (2014).

    Article 

    Google Scholar 

  • Caires, R. A. & Figueiredo, J. L. Review of the genus Microphilypnus Myers, 1927 (Teleostei: Gobioidei: Eleotridae) from the lower Amazon basin, with description of one new species. Zootaxa 3036, 39–57. https://doi.org/10.11646/zootaxa.3036.1.3 (2011).

    Article 

    Google Scholar 

  • Caires, R. A. Microphilypnus tapajosensis, a new species of eleotridid from the Tapajós basin, Brazil (Gobioidei: Eleotrididae). Ichthyol. Explor. Freshw. 23, 155–160 (2013).

    Google Scholar 

  • Caires, R. A. & Guimarães-Costa, A. Family Eleotridae. In Field Guide to Amazonian Fishes (eds van Sleen, P. & Albert, J.) 388–391 (Princeton University Press, 2017).

    Google Scholar 

  • Caires, R. A. & Toledo-Piza, M. A New species of miniature fish of the genus Microphilypnus (Gobioidei: Eleotridae) from the upper Rio Negro Basin, Amazonas Brazil. Copeia 106(1), 49–55. https://doi.org/10.1643/CI-17-634 (2018).

    Article 

    Google Scholar 

  • Roberts, T.R. Leptophilypnion, a new genus with two new species of tiny central Amazonian gobioid fishes (Teleostei, Eleotridae). Aqua (2013).

  • Gould, R. E. & Delevoryas, T. The biology of Glossopteris: Evidence from petrified seed-bearing and pollen-bearing organs. Alcheringa 1(4), 387–399 (1977).

    Article 

    Google Scholar 

  • Rüber, L., Kottelat, M., Tan, H. H., Ng, P. K. & Britz, R. Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world’s smallest vertebrate. BMC Evol. Biol. 7(1), 1–10. https://doi.org/10.1186/1471-2148-7-38 (2007).

    Article 
    CAS 

    Google Scholar 

  • Britz, R., Conway, K. W. & Rüber, L. Miniatures, morphology and molecules: Paedocypris and its phylogenetic position (Teleostei, Cypriniformes). Zool. J. Linn. Soc. 172(3), 556–615. https://doi.org/10.1111/zoj.12184 (2014).

    Article 

    Google Scholar 

  • Bloom, D. D., Kolmann, M., Foster, K. & Watrous, H. Mode of miniaturisation influences body shape evolution in New World anchovies (Engraulidae). J. Fish Biol. 96(1), 194–201 (2019).

    Article 

    Google Scholar 

  • Thacker, C. E. Molecular phylogeny of the gobioid fishes (Teleostei: Perciformes: Gobioidei). Mol. Phylogenet. Evol. 26, 354–368. https://doi.org/10.1016/S1055-7903(02)00361-5 (2003).

    Article 
    CAS 

    Google Scholar 

  • Birdsong, R. S., Murdy, E. O. & Pezold, F. L. A study of the vertebral column and median fin osteology in gobioid fishes with comments on gobioid relationships. Bull. Mar. Sci. 42(2), 174–214 (1988).

    Google Scholar 

  • Thacker, C. E. Patterns of divergence in fish species separated by the Isthmus of Panama. BMC Evol. Biol. 17(1), 1–14. https://doi.org/10.1186/s12862-017-0957-4 (2017).

    Article 

    Google Scholar 

  • Galván-Quesada, S. et al. Molecular phylogeny and biogeography of the amphidromous fish genus Dormitator Gill 1861 (Teleostei: Eleotridae). PLoS One 11(4), e0153538. https://doi.org/10.1371/journal.pone.0153538 (2016).

    Article 
    CAS 

    Google Scholar 

  • Lessios, H. A. The great American schism: Divergence of marine organisms after therise of the central American isthmus. Annu. Rev. Ecol. Evol. Syst. 2008(39), 63–92. https://doi.org/10.1146/annurev.ecolsys.38.091206.095815 (2008).

    Article 

    Google Scholar 

  • Lovejoy, N. R., Albert, J. S. & Crampton, W. G. Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes. J. S. Am. Earth Sci. 21, 5–13. https://doi.org/10.1016/j.jsames.2005.07.009 (2006).

    Article 

    Google Scholar 

  • Cooke, G. M., Chao, N. L. & Beheregaray, L. B. Marine incursions, cryptic species and ecological diversification in Amazonia: The biogeographic history of the croaker genus Plagioscion (Sciaenidae). J. Biogeogr. 39, 724–738. https://doi.org/10.1111/j.1365-2699.2011.02635.x (2012).

    Article 

    Google Scholar 

  • Bloom, D. D. & Lovejoy, N. R. On the origins of marine-derived freshwater fishes in South America. J. Biogeogr. 44(9), 1927–1938. https://doi.org/10.1111/jbi.12954 (2017).

    Article 

    Google Scholar 

  • Monsch, K. A. Miocene fish faunas from the northwestern Amazonia basin (Colombia, Peru, Brazil) with evidence of marine incursions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 143, 31–50. https://doi.org/10.1016/S0031-0182(98)00064-9 (1998).

    Article 

    Google Scholar 

  • Hoorn, C. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynostratigraphic study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, 267–309. https://doi.org/10.1016/0031-0182(93)90087-Y (1993).

    Article 

    Google Scholar 

  • Hoorn, C., Guerrero, J., Sarmiento, G. A. & Lorente, M. A. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23, 237–240. https://doi.org/10.1130/0091-7613(1995)023%3C0237:ATAACF%3E2.3.CO;2 (1995).

    Article 
    ADS 

    Google Scholar 

  • Gingras, M. K., Rasanen, M. E., Pemberton, S. G. & Romero, L. P. Ichnology and sedimentology reveal depositional characteristics of bay-margin parasequences in the Miocene Amazonian foreland basin. J. Sediment. Res. 72, 871–883. https://doi.org/10.1306/052002720871 (2002).

    Article 
    ADS 

    Google Scholar 

  • Wesselingh, F. P. et al. Lake Pebas: A palaeoecological reconstruction of a Miocene, long-lived lake complex in western Amazonia. Cainoz. Res. 1, 35–81 (2002).

    Google Scholar 

  • Bloom, D. D. & Lovejoy, N. R. Molecular phylogenetics reveals a pattern of biome conservatism in New World anchovies (family Engraulidae). J. Evol. Biol. 25(4), 701–715 (2012).

    Article 

    Google Scholar 

  • Ward, A. B. & Azizi, E. Convergent evolution of the head retraction escape response in elongate fishes and amphibians. Zoology 107(3), 205–217. https://doi.org/10.1016/j.zool.2004.04.003 (2004).

    Article 

    Google Scholar 

  • Palumbi, S. R. & Benzie, J. Large mitochondrial DNA differences between morphologically similar penaeid shrimp. Mol. Mar. Biol. Biotechnol. 1, 27–34 (1991).

    CAS 

    Google Scholar 

  • Chen, W. J., Bonillo, C. & Lecointre, G. Repeatability of clades as criterion of reliability: A case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol. Phylogenet. Evol. 26, 262–288. https://doi.org/10.1016/j.gene.2008.07.016 (2003).

    Article 
    CAS 

    Google Scholar 

  • Chen, W. J., Miya, M., Saitoh, K. & Mayden, R. L. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: The order Cypriniformes (Ostariophysi) as a case study. Gene 423, 125–134. https://doi.org/10.1016/j.gene.2008.07.016 (2008).

    Article 
    CAS 

    Google Scholar 

  • Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. PNAS 74(12), 5463–5467. https://doi.org/10.1073/pnas.74.12.5463 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).

    Article 
    CAS 

    Google Scholar 

  • Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).

    Article 

    Google Scholar 

  • Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msw260 (2016).

    Article 

    Google Scholar 

  • Heled, J. & Drummond, A. J. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8(1), 1–15. https://doi.org/10.1186/1471-2148-8-289 (2008).

    Article 
    CAS 

    Google Scholar 

  • Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10(4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537 (2014).

    Article 
    CAS 

    Google Scholar 

  • Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4(5), e88. https://doi.org/10.1371/journal.pbio.0040088 (2006).

    Article 
    CAS 

    Google Scholar 

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67(5), 901. https://doi.org/10.1093/sysbio/syy032 (2018).

    Article 
    CAS 

    Google Scholar 

  • Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214. https://doi.org/10.1186/1471-2148-7-214 (2007).

    Article 
    CAS 

    Google Scholar 

  • Rambaut, A. FigTree, a graphical viewer of phylogenetic trees (Version 1.4.3) (2017).

  • Betancur-R, R. et al. Phylogenetic classification of bony fishes. BMC Evol. Biol. 17(1), 1–40. https://doi.org/10.1186/s12862-017-0958-3 (2017).

    Article 

    Google Scholar 

  • Jones, G. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J. Math. Biol. 74, 447–467 (2017).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    The success of woody plant removal depends on encroachment stage and plant traits

    Evelyn Wang appointed as director of US Department of Energy’s Advanced Research Projects Agency-Energy