in

Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the Northern Hemisphere

  • Sun, J. et al. Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia. Sci. Rep. 4, 7463 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tiffney, B. H. Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J. Arnold Arbor. Harv. Univ. 66, 73–94 (1985).

    Google Scholar 

  • Tiffney, B. H. The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J. Arnold Arbor. Harv. Univ. 66, 243–273 (1985).

    Google Scholar 

  • Donoghue, M. J. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl Acad. Sci. USA 105, 11549–11555 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edwards, E. J. et al. Convergence, consilience, and the evolution of temperate deciduous forests. Am. Nat. 190, S87–S104 (2017).

    PubMed 

    Google Scholar 

  • Segovia, R. A. et al. Freezing and water availability structure the evolutionary diversity of trees across the Americas. Sci. Adv. 6, eaaz5373 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tiffney, B. H. & Manchester, S. R. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. Int. J. Plant Sci. 162, S3–S17 (2001).

    Google Scholar 

  • Tierney, J. E. et al. Past climates inform our future. Science 370, eaay3701 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Axelrod, D. I. Biogeography of oaks in the Arcto-Tertiary province. Ann. Mo. Bot. Gard. 70, 629–657 (1983).

    Google Scholar 

  • Axelrod, D. I., Ai-Shehbaz, I. & Raven, P. H. History of the Modern Flora of China. (Springer, 1996).

  • Cavender-Bares, J. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. N. Phytol. 221, 669–692 (2019).

    Google Scholar 

  • Delcourt, H. R. & A., D. P. North American Terrestrial Vegetation. (Cambridge University Press, 2000).

  • Olson, J. S., Watts, J. A. & Allison, L. J. Carbon in Live Vegetation of Major World Ecosystems (1983).

  • Soepadmo, E. Flora Malesiana Series I. Vol. 7 (Noordhoff International Publishing, 1972).

  • Vogt, K. A. et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187, 159–219 (1996).

    CAS 

    Google Scholar 

  • Whitmore, T. C. Tropical Rain Forest of the Far East. (Oxford University Press, 1984).

  • Zhu, H. Ecological and biogeographical studies on the tropical rain forest of south Yunnan, SW China with a special reference to its relation with rain forests of tropical Asia. J. Biogeogr. 24, 647–662 (1997).

    Google Scholar 

  • Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 116, 23163–23168 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, F., Kohler, A., Murat, C., Veneault-Fourrey, C. & Hibbett, D. S. Unearthing the roots of ectomycorrhizal symbioses. Nat. Rev. Microbiol. 14, 760–773 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis, 2nd edn. (Academic Press, 1997).

  • Abrahamson, W. G. & Melika, G. Gall-inducing insects (Cynipinae) provide insights into plant systematic relationships. Am. J. Bot. 85, 111–111 (1998).

    Google Scholar 

  • Raman, A. Nutritional diversity in gall-inducing insects and their evolutionary relationships with flowering plants. Int. J. Ecol. Environ. Sci. 22, 133–143 (1996).

    Google Scholar 

  • Stone, G. N. et al. Extreme host plant conservatism during at least 20 million years of host plant pursuit by oak gallwasps. Evolution 63, 854–869 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Johnson, W. C. & Webb, T. The role of bluejays (Cyanocitta cristata L.) in the postglacial dispersal of fagaceous trees in eastern North America. J. Biogeogr. 16, 561–571 (1989).

    Google Scholar 

  • Koenig, W. D. & Haydock, J. Oaks, acorns, and the geographical ecology of acorn woodpeckers. J. Biogeogr. 26, 159–165 (1999).

    Google Scholar 

  • Payne, J. & Francis, C. M. A Field Guide to the Mammals of Borneo. (Sabah Society with World Wildlife Fund Malaysia, 1985).

  • Steele, M. A. Oak Seed Dispersal. (The Johns Hopkins University Press, 2021).

  • Vander Wall, S. B. The evolutionary ecology of nut dispersal. Bot. Rev. 67, 74–117 (2001).

    Google Scholar 

  • Vander Wall, S. B. How plants manipulate the scatter-hoarding behaviour of seed-dispersing animals. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 365, 989–997 (2010).

    Google Scholar 

  • Barrón, E. et al. in Oaks physiological ecology. Exploring the functional diversity of genus Quercus L. (eds. Eustaquio Gil-Pelegrín, José Javier Peguero-Pina, & Domingo Sancho-Knapik) 39–105 (Springer International Publishing, 2017).

  • Crepet, W. L. & Nixon, K. C. Earliest megafossil evidence of Fagaceae: Phylogenetic and biogeographic implications. Am. J. Bot. 76, 842–855 (1989).

    Google Scholar 

  • Denk, T. & Grimm, G. W. Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae). Int. J. Plant Sci. 170, 926–940 (2009).

    Google Scholar 

  • Denk, T., Grímsson, F. & Zetter, R. Fagaceae from the early Oligocene of Central Europe: Persisting new world and emerging old world biogeographic links. Rev. Palaeobot. Palynol. 169, 7–20 (2012).

    Google Scholar 

  • Grímsson, F., Grimm, G. W., Zetter, R. & Denk, T. Cretaceous and Paleogene Fagaceae from North America and Greenland: Evidence for a Late Cretaceous split between Fagus and the remaining Fagaceae. Acta Palaeobotanica 56, 247–305 (2016).

    Google Scholar 

  • Jones, J. H. Evolution of the Fagaceae: the implications of foliar features. Ann. Mo. Bot. Gard. 73, 228–275 (1986).

    Google Scholar 

  • Manchester, S. R. Biogeographical relationships of North American Tertiary floras. Ann. Mo. Bot. Gard. 86, 472–522 (1999).

    Google Scholar 

  • Sadowski, E. M., Schmidt, A. R. & Denk, T. Staminate inflorescences with in situ pollen from Eocene Baltic amber reveal high diversity in Fagaceae (oak family). Willdenowia 50, 405–517 (2020).

    Google Scholar 

  • Bouchal, J., Zetter, R., Grimsson, F. & Denk, T. Evolutionary trends and ecological differentiation in early Cenozoic Fagaceae of western North America. Am. J. Bot. 101, 1332–1349 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Naryshkina, N. N. & Evstigneeva, T. A. Fagaceae in the Eocene palynoflora of the south of primorskii region: New data on taxonomy and morphology. Paleontol. J. 54, 429–439 (2020).

    Google Scholar 

  • Sadowski, E.-M., Hammel, J. U. & Denk, T. Synchrotron X-ray imaging of a dichasium cupule of Castanopsis from Eocene Baltic amber. Am. J. Bot. 105, 2025–2036 (2018).

    PubMed 

    Google Scholar 

  • Gandolfo, M. A., Nixon, K. C., Crepet, W. L. & Grimaldi, D. A. A late Cretaceous fagalean inflorescence preserved in amber from New Jersey. Am. J. Bot. 105, 1424–1435 (2018).

    PubMed 

    Google Scholar 

  • Hipp, A. L. et al. Genomic landscape of the global oak phylogeny. N. Phytol. 226, 1198–1212 (2020).

    CAS 

    Google Scholar 

  • Wilf, P., Nixon, K. C., Gandolfo, M. A. & Cuneo, N. R. Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests. Science 364, eaaw5139 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Petit, R. J. & Hampe, A. Some evolutionary consequences of being a tree. Annu. Rev. Ecol., Evol. Syst. 37, 187–214 (2006).

    Google Scholar 

  • Smith, S. A. & Donoghue, M. J. Rates of molecular evolution are linked to life history in flowering plants. Science 322, 86–89 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boucher, F. C., Verboom, G. A., Musker, S. & Ellis, A. G. Plant size: A key determinant of diversification? N. Phytol. 216, 24–31 (2017).

    Google Scholar 

  • Parins-Fukuchi, C., Stull, G. W. & Smith, S. A. Phylogenomic conflict coincides with rapid morphological innovation. Proc. Natl Acad. Sci. USA 118, e2023058118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Denk, T., Grimm, G. W., Manos, P. S., Deng, M. & Hipp, A. L. in Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Vol. 7 Tree Physiology (eds. GilPelegrin, E., PegueroPina, J. J., & SanchoKnapik, D.) 13–38 (Springer International Publishing Ag, Gewerbestrasse 11, Cham, Ch-6330, Switzerland, 2017).

  • Deng, M., Jiang, X. L., Hipp, A. L., Manos, P. S. & Hahn, M. Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): Insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Mol. Phylogen. Evol. 119, 170–181 (2018).

    Google Scholar 

  • Hipp, A. L. et al. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. N. Phytol. 217, 439–452 (2018).

    CAS 

    Google Scholar 

  • Crowl, A. A. et al. Uncovering the genomic signature of ancient introgression between white oak lineages (Quercus). N. Phytol. 226, 1158–1170 (2020).

    CAS 

    Google Scholar 

  • Hauser, D. A., Keuter, A., McVay, J. D., Hipp, A. L. & Manos, P. S. The evolution and diversification of the red oaks of the California Floristic Province (Quercus section Lobatae, series Agrifoliae). Am. J. Bot. 104, 1581–1595 (2017).

    PubMed 

    Google Scholar 

  • McVay, J. D., Hauser, D., Hipp, A. L. & Manos, P. S. Phylogenomics reveals a complex evolutionary history of lobed-leaf white oaks in western North America. Genome 60, 733–742 (2017).

    PubMed 

    Google Scholar 

  • McVay, J. D., Hipp, A. L. & Manos, P. S. A genetic legacy of introgression confounds phylogeny and biogeography in oaks. Proc. R. Soc. B. 284, 20170300 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Manos, P. S., Doyle, J. J. & Nixon, K. C. Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol. Phylogen. Evol. 12, 333–349 (1999).

    CAS 

    Google Scholar 

  • Pham, K. K., Hipp, A. L., Manos, P. S. & Cronn, R. C. A time and a place for everything: phylogenetic history and geography as joint predictors of oak plastome phylogeny. Genome 60, 720–732 (2017).

    PubMed 

    Google Scholar 

  • Simeone, M. C. et al. Plastome data reveal multiple geographic origins of Quercus Group Ilex. PeerJ 4, e1897 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Oh, S.-H. & Manos, P. S. Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. Taxon 57, 434–451 (2008).

    Google Scholar 

  • Renne, P. R. et al. Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339, 684–687 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Koenen, E. J. M. et al. The origin of the Legumes is a complex paleopolyploid phylogenomic tangle closely associated with the Cretaceous–Paleogene (K–Pg) mass extinction event. Syst. Biol. 70, 508–526 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, W. et al. Menispermaceae and the diversification of tropical rainforests near the Cretaceous-Paleogene boundary. N. Phytol. 195, 470–478 (2012).

    Google Scholar 

  • Suh, A., Smeds, L. & Ellegren, H. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of Neoavian birds. PLoS Biol. 13, e1002224 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, Y. J. et al. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous-Paleogene boundary. Proc. Natl Acad. Sci. USA 114, E5864–E5870 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alfaro, M. E. et al. Explosive diversification of marine fishes at the Cretaceous-Palaeogene boundary. Nat. Ecol. Evol. 2, 688–696 (2018).

    PubMed 

    Google Scholar 

  • Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Martinez, I. & Gonzalez-Taboada, F. Seed dispersal patterns in a temperate forest during a mast event: performance of alternative dispersal kernels. Oecologia 159, 389–400 (2009).

    ADS 
    PubMed 

    Google Scholar 

  • Larson-Johnson, K. Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales. N. Phytol. 209, 418–435 (2016).

    CAS 

    Google Scholar 

  • Xiang, X. G. et al. Large-scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diaspores and environments in the Paleogene. Perspect. Plant Ecol. Evol. Syst. 16, 101–110 (2014).

    Google Scholar 

  • Casanovas-Vilar, I. et al. Oldest skeleton of a fossil flying squirrel casts new light on the phylogeny of the group. Elife 7, e39270 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Huchon, D. et al. Rodent phylogeny and a timescale for the evolution of glires: Evidence from an extensive taxon sampling using three nuclear genes. Mol. Biol. Evol. 19, 1053–1065 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roth, V. L. & Mercer, J. M. The Effects of Cenozoic Global Change on Squirrel Phylogeny. Science 299, 1568–1572 (2003).

    ADS 
    PubMed 

    Google Scholar 

  • Jonsson, K. A. et al. A supermatrix phylogeny of corvoid passerine birds (Ayes: Corvides). Mol. Phylogen. Evol. 94, 87–94 (2016).

    Google Scholar 

  • Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Benz, B. W., Robbins, M. B. & Peterson, A. T. Evolutionary history of woodpeckers and allies (Aves: Picidae): Placing key taxa on the phylogenetic tree. Mol. Phylogen. Evol. 40, 389–399 (2006).

    CAS 

    Google Scholar 

  • Lutzoni, F. et al. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat. Commun. 9, 5451 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonfante, P. & Genre, A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1, 48 (2010).

    ADS 
    PubMed 

    Google Scholar 

  • Miyauchi, S. et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11, 5125 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Varga, T. et al. Megaphylogeny resolves global patterns of mushroom evolution. Nat. Ecol. Evol. 3, 668–678 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y. Y., Qu, X. J., Zhang, R., Stull, G. W. & Yi, T. S. Plastid phylogenomic analyses of Fagales reveal signatures of conflict and ancient chloroplast capture. Mol. Phylogen. Evol. 163, 107232 (2021).

    Google Scholar 

  • Whittemore, A. T. & Schaal, B. A. Interspecific gene flow in sympatric oaks. Proc. Natl Acad. Sci. USA 88, 2540–2544 (1991).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kremer, A. & Hipp, A. L. Oaks: an evolutionary success story. N. Phytol. 226, 987–1011 (2020).

    Google Scholar 

  • Petit, R. et al. Chloroplast DNA variation in European white oaks phylogeography and patterns of diversity based on data from over 2600 populations. Ecol. Manag. 176, 595–599 (2003).

    Google Scholar 

  • Petit, R. et al. Chloroplast DNA footprints of postglacial recolonization by oaks. Proc. Natl Acad. Sci. USA 94, 9996–10001 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petit, R. J. & Excoffier, L. Gene flow and species delimitation. Trends Ecol. Evol. 24, 386–393 (2009).

    PubMed 

    Google Scholar 

  • Premoli, A. C., Mathiasen, P., Cristina Acosta, M. & Ramos, V. A. Phylogeographically concordant chloroplast DNA divergence in sympatric Nothofagus s.s. How deep can it be? N. Phytol. 193, 261–275 (2012).

    CAS 

    Google Scholar 

  • Tsuda, Y., Semerikov, V., Sebastiani, F., Vendramin, G. G. & Lascoux, M. Multispecies genetic structure and hybridization in the Betula genus across Eurasia. Mol. Ecol. 26, 589–605 (2017).

    PubMed 

    Google Scholar 

  • Zhang, B. W. et al. Phylogenomics reveals an ancient hybrid origin of the persian walnut. Mol. Biol. Evol. 36, 2451–2461 (2019).

    CAS 

    Google Scholar 

  • Bock, R. Witnessing genome evolution: experimental reconstruction of endosymbiotic and horizontal gene transfer. Annu. Rev. Genet. 51, 1–22 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Hill, W. G. Disequilibrium among several linked neutral genes in finite population: II. Variances and covariances of disequilibria. Theor. Popul. Biol. 6, 184–198 (1974).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Huerta-Sanchez, E. et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, Y. et al. Megabase-scale presence-absence variation with Tripsacum origin was under selection during maize domestication and adaptation. Genome Biol. 22, 237 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X. et al. The history and evolution of the Denisovan-EPAS1 haplotype in Tibetans. Proc. Natl Acad. Sci. USA 118, e2020803118 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cavender-Bares, J., Gonzalez-Rodriguez, A., Pahlich, A., Koehler, K. & Deacon, N. Phylogeography and climatic niche evolution in live oaks (Quercus series Virentes) from the tropics to the temperate zone. J. Biogeogr. 38, 962–981 (2011).

    Google Scholar 

  • Chen, D. et al. Phylogeography of Quercus variabilis based on chloroplast DNA sequence in East Asia: multiple glacial refugia and mainland-migrated island populations. PLoS ONE 7, e47268 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Plomion, C. et al. Oak genome reveals facets of long lifespan. Nat. Plants 4, 440–452 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leroy, T. et al. Adaptive introgression as a driver of local adaptation to climate in European white oaks. N. Phytol. 226, 1171–1182 (2020).

    Google Scholar 

  • O’Donnell, S. T., Fitz-Gibbon, S. T. & Sork, V. L. Ancient introgression between distantly related White Oaks (Quercus sect. Quercus) shows evidence of climate-associated asymmetric gene exchange. J. Hered. 112, 663–670 (2021).

    PubMed 

    Google Scholar 

  • Nagamitsu, T., Uchiyama, K., Izuno, A., Shimizu, H. & Nakanishi, A. Environment-dependent introgression from Quercus dentata to a coastal ecotype of Quercus mongolica var. crispula in northern Japan. N. Phytol. 226, 1018–1028 (2020).

    CAS 

    Google Scholar 

  • Maxwell, L. M., Walsh, J., Olsen, B. J. & Kovach, A. I. Patterns of introgression vary within an avian hybrid zone. BMC Ecol. Evol. 21, 14 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hewitt, G. M. Hybrid zones-natural laboratories for evolutionary studies. Trends Ecol. Evol. 3, 158–167 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • Gernandt, D. S., Resendiz Arias, C., Terrazas, T., Aguirre Dugua, X. & Willyard, A. Incorporating fossils into the Pinaceae tree of life. Am. J. Bot. 105, 1329–1344 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Rose, J. P., Toledo, C. A. P., Lemmon, E. M., Lemmon, A. R. & Sytsma, K. J. Out of sight, out of mind: Widespread nuclear and plastid-nuclear discordance in the flowering plant genus Polemonium (Polemoniaceae) suggests widespread historical gene flow despite limited nuclear signal. Syst. Biol. 70, 162–180 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Truffaut, L. et al. Fine-scale species distribution changes in a mixed oak stand over two successive generations. N. Phytol. 215, 126–139 (2017).

    CAS 

    Google Scholar 

  • Petit, R. J., Bodénès, C., Ducousso, A., Roussel, G. & Kremer, A. Hybridization as a mechanism of invasion in oaks. N. Phytol. 161, 151–164 (2003).

    Google Scholar 

  • Sork, V. L. et al. Phylogeny and introgression of California scrub White Oaks (Quercus section Quercus). Int. Oaks J. 27, 61–74 (2016).

    Google Scholar 

  • Quang, N. D., Ikeda, S. & Harada, K. Nucleotide variation in Quercus crispula Blume. Heredity (Edinb.) 101, 166–174 (2008).

    CAS 

    Google Scholar 

  • Graham, A. The role of land bridges, ancient environments, and migrations in the assembly of the North American flora. J. Syst. Evol. 56, 405–429 (2018).

    Google Scholar 

  • Suarez-Gonzalez, A., Lexer, C. & Cronk, Q. C. B. Adaptive introgression: a plant perspective. Biol. Lett. 14, e47268 (2018).

    Google Scholar 

  • Abbott, R. J., Barton, N. H. & Good, J. M. Genomics of hybridization and its evolutionary consequences. Mol. Ecol. 25, 2325–2332 (2016).

    PubMed 

    Google Scholar 

  • Goulet, B. E., Roda, F. & Hopkins, R. Hybridization in plants: Old ideas, new techniques. Plant Physiol. 173, 65–78 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Mitchell, N. et al. Correlates of hybridization in plants. Evol. Lett. 3, 570–585 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Payseur, B. A. & Rieseberg, L. H. A genomic perspective on hybridization and speciation. Mol. Ecol. 25, 2337–2360 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bodenes, C. et al. Comparative mapping in the Fagaceae and beyond with EST-SSRs. BMC Plant Biol. 12, 153 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cannon, C. H. & Petit, R. J. The oak syngameon: More than the sum of its parts. N. Phytol. 226, 978–983 (2020).

    Google Scholar 

  • Chen, S. C., Cannon, C. H., Kua, C. S., Liu, J. J. & Galbraith, D. W. Genome size variation in the Fagaceae and its implications for trees. Tree Genet. Genom. 10, 977–988 (2014).

    Google Scholar 

  • Kremer, A. et al. Genomics of Fagaceae. Tree Genet. Genom. 8, 583–610 (2012).

    Google Scholar 

  • Neale, D. B., Martinez-Garcia, P. J., De La Torre, A. R., Montanari, S. & Wei, X. X. Novel insights into tree biology and genome evolution as revealed through genomics. Annu. Rev. Plant Biol. 68, 457–483 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Staton, M. et al. Substantial genome synteny preservation among woody angiosperm species: Comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes. BMC Genomics 16, 744 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Manos, P. S. & Stanford, A. M. The historical biogeography of Fagaceae: tracking the tertiary history of temperate and subtropical forests of the Northern Hemisphere. Int. J. Plant Sci. 162, S77–S93 (2001).

    Google Scholar 

  • Salojarvi, J. et al. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat. Genet. 49, 904–912 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Mishra, B. et al. A reference genome of the European beech (Fagus sylvatica L.). Gigascience 7, giy063 (2018).

    ADS 
    PubMed Central 

    Google Scholar 

  • Xing, Y. et al. Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima). Gigascience 8, giz112 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sork, V. L. et al. High-quality genome and methylomes illustrate features underlying evolutionary success of oaks. Preprint at bioRxiv https://doi.org/10.1101/2021.04.09.439191 (2021).

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Camacho, C. et al. BLAST plus: architecture and applications. BMC Bioinforma. 10, 421 (2009).

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at http://arxiv.org/abs/1303.3997v2 (2013).

  • McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bertels, F., Silander, O. K., Pachkov, M., Rainey, P. B. & van Nimwegen, E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol. Biol. Evol. 31, 1077–1088 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haudry, A. et al. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat. Genet. 45, 891–898 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Hupalo, D. & Kern, A. D. Conservation and functional element discovery in 20 angiosperm plant genomes. Mol. Biol. Evol. 30, 1729–1744 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45, e18 (2017).

    PubMed 

    Google Scholar 

  • Qu, X. J., Moore, M. J., Li, D. Z. & Yi, T. S. PGA: A software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15, 50 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Katoh, K. & Standley, D. M. Mafft multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ronquist, F. et al. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partitionfinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Akaike, H. New look at statistical-model identification. Ieee Trans. Autom. Control AC19, 716–723 (1974).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinforma. 19, 153 (2018).

    Google Scholar 

  • Chifman, J. & Kubatko, L. Quartet inference from SNP data under the coalescent model. Bioinformatics 30, 3317–3324 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • PAUP*. Phylogenetic analysis using parsimony (* and other methods). v. Version 4. (Sinauer Associates, Sunderland, 2003).

  • Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • dos Reis, M. & Yang, Z. Approximate likelihood calculation on a phylogeny for bayesian estimation of divergence times. Mol. Biol. Evol. 28, 2161–2172 (2011).

    PubMed 

    Google Scholar 

  • Chen, D. et al. Divergence time estimation of Galliformes based on the best gene shopping scheme of ultraconserved elements. BMC Ecol. Evol. 21, 209 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, S. A., Brown, J. W. & Walker, J. F. So many genes, so little time: A practical approach to divergence-time estimation in the genomic era. PLoS ONE 13, e0197433 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Johns, C. A., Toussaint, E. F. A., Breinholt, J. W. & Kawahara, A. Y. Origin and macroevolution of micro-moths on sunken Hawaiian Islands. Proc. R. Soc. B. 285, 20181047 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rabosky, D. L. et al. BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).

    Google Scholar 

  • Salichos, L., Stamatakis, A. & Rokas, A. Novel information theory-based measures for quantifying incongruence among phylogenetic trees. Mol. Biol. Evol. 31, 1261–1271 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Smith, S. A., Moore, M. J., Brown, J. W. & Yang, Y. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol. Biol. 15, 150 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia, X. H., Xie, Z., Salemi, M., Chen, L. & Wang, Y. An index of substitution saturation and its application. Mol. Phylogen. Evol. 26, 1–7 (2003).

    CAS 

    Google Scholar 

  • Xia, X. DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Mol. Biol. Evol. 35, 1550–1552 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McInerney, J. O. GCUA: general codon usage analysis. Bioinformatics 14, 372–373 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Folk, R. A., Mandel, J. R. & Freudenstein, J. V. Ancestral gene flow and parallel organellar genome capture result in extreme phylogenomic discord in a lineage of angiosperms. Syst. Biol. 66, 320–337 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Sukumaran, J. & Holder, M. T. DendroPy: A Python library for phylogenetic computing. Bioinformatics 26, 1569–1571 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Olave, M., Avila, L. J., Sites, J. W., Morando, M. & Freckleton, R. Detecting hybridization by likelihood calculation of gene tree extra lineages given explicit models. Methods Ecol. Evol. 9, 121–133 (2017).

    Google Scholar 

  • Than, C. & Nakhleh, L. Species tree inference by minimizing deep coalescences. PLoS Comp. Biol. 5, e1000501 (2009).

    ADS 
    MathSciNet 

    Google Scholar 

  • Malinsky, M., Matschiner, M. & Svardal, H. Dsuite – Fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21, 584–595 (2021).

    PubMed 

    Google Scholar 

  • Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • Solis-Lemus, C. & Ane, C. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genet. 12, e1005896 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Solis-Lemus, C., Bastide, P. & Ane, C. Phylonetworks: A package for phylogenetic networks. Mol. Biol. Evol. 34, 3292–3298 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Hejase, H. A. & Liu, K. J. A scalability study of phylogenetic network inference methods using empirical datasets and simulations involving a single reticulation. BMC Bioinforma. 17, 422 (2016).

    Google Scholar 

  • Shen, X. X., Hittinger, C. T. & Rokas, A. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat. Ecol. Evol. 1, 126 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Browning, B. L. & Browning, S. R. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194, 459–471 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Changes in trophic structure of an exploited fish community at the centennial scale are linked to fisheries and climate forces

    Microbes and minerals may have set off Earth’s oxygenation