Westerling, A. L. R. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Phil. Trans. R. Soc. B 371, 20150178 (2016).
Google Scholar
Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).
Google Scholar
Gonzalez, P. et al. Southwest: Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment (U.S. Global Change Research Program, 2018).
McLauchlan, K. K. et al. Fire as a fundamental ecological process: research advances and frontiers. J. Ecol. 108, 2047–2069 (2020).
Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).
Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl Acad. Sci. USA 116, 6193–6198 (2019).
Google Scholar
Stephens, S. L. et al. Drought, tree mortality, and wildfire in forests adapted to frequent fire. Bioscience 68, 77–88 (2018).
Radeloff, V. C. et al. Rapid growth of the US wildland–urban interface raises wildfire risk. Proc. Natl Acad. Sci. USA 115, 3314–3319 (2018).
Google Scholar
Syphard, A. D., Keeley, J. E., Pfaff, A. H. & Ferschweiler, K. Human presence diminishes the importance of climate in driving fire activity across the United States. Proc. Natl Acad. Sci. USA 114, 13750–13755 (2017).
Google Scholar
Mietkiewicz, N. et al. In the line of fire: consequences of human-ignited wildfires to homes in the U.S. (1992–2015). Fire 3, 50 (2020).
Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).
Google Scholar
McKenzie, D. & Littell, J. S. Climate change and the eco-hydrology of fire: will area burned increase in a warming western USA. Ecol. Appl. 27, 26–36 (2017).
Google Scholar
Littell, J. S., Mckenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021 (2009).
Google Scholar
Jensen, D. et al. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems. Environ. Res. Lett. 13, 014021 (2018).
Google Scholar
Vicente-Serrano, S. M., Quiring, S. M., Peña-Gallardo, M., Yuan, S. & Domínguez-Castro, F. A review of environmental droughts: increased risk under global warming? Earth Sci. Rev. 201, 102953 (2020).
Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. 122, 2061–2079 (2017).
Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D. & Diffenbaugh, N. S. Multidimensional risk in a nonstationary climate: joint probability of increasingly severe warm and dry conditions. Sci. Adv. 4, eaau3487 (2018).
Google Scholar
Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate–fire relationships. Glob. Change Biol. 24, 5164–5175 (2018).
Williams, A. P. & Abatzoglou, J. T. Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity. Curr. Clim. Change Rep. 2, 1–14 (2016).
Bradstock, R. A. A biogeographic model of fire regimes in Australia: current and future implications. Glob. Ecol. Biogeogr. 19, 145–158 (2010).
Krawchuk, M. A. & Moritz, M. A. Constraints on global fire activity vary across a resource gradient. Ecology 92, 121–132 (2011).
Google Scholar
Scarff, F. R. et al. Effects of plant hydraulic traits on the flammability of live fine canopy fuels. Funct. Ecol. 35, 835–846 (2021).
Ruffault, J., Martin-StPaul, N., Pimont, F. & Dupuy, J. L. How well do meteorological drought indices predict live fuel moisture content (LFMC)? An assessment for wildfire research and operations in Mediterranean ecosystems. Agric. For. Meteorol. 262, 391–401 (2018).
Pivovaro, A. L. et al. The effect of ecophysiological traits on live fuel moisture content. Fire 2, 28 (2019).
Nolan, R. H., Hedo, J., Arteaga, C., Sugai, T. & Resco de Dios, V. Physiological drought responses improve predictions of live fuel moisture dynamics in a Mediterranean forest. Agric. For. Meteorol. 263, 417–427 (2018).
Skelton, R. P., West, A. G. & Dawson, T. E. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proc. Natl Acad. Sci. USA 112, 5744–5749 (2015).
Google Scholar
Ma, W. et al. Assessing climate change impacts on live fuel moisture and wildfire risk using a hydrodynamic vegetation model. Biogeosciences 18, 4005–4020 (2021).
Google Scholar
McColl, K. A. et al. The global distribution and dynamics of surface soil moisture. Nat. Geosci. 10, 100–104 (2017).
Google Scholar
Chuvieco, E., González, I., Verdú, F., Aguado, I. & Yebra, M. Prediction of fire occurrence from live fuel moisture content measurements in a Mediterranean ecosystem. Int. J. Wildland Fire 18, 430–441 (2009).
Rao, K., Williams, A. P., Flefil, J. F. & Konings, A. G. SAR-enhanced mapping of live fuel moisture content. Remote Sens. Environ. 245, 111797 (2020).
Nolan, R. H., Boer, M. M., Resco De Dios, V., Caccamo, G. & Bradstock, R. A. Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia. Geophys. Res. Lett. 43, 4229–4238 (2016).
Dennison, P. E. & Moritz, M. A. Critical live fuel moisture in chaparral ecosystems: a threshold for fire activity and its relationship to antecedent precipitation. Int. J. Wildland Fire 18, 1021–1027 (2009).
Tumino, B. J., Duff, T. J., Goodger, J. Q. D. & Cawson, J. G. Plant traits linked to field-scale flammability metrics in prescribed burns in Eucalyptus forest. PLoS ONE 14, e0221403 (2019).
Rodman, K. C. et al. A trait-based approach to assessing resistance and resilience to wildfire in two iconic North American conifers. J. Ecol. 109, 313–326 (2021).
Resco de Dios, V. Plant–Fire Interactions (Springer, 2020).
Hurteau, M. D., Liang, S., Westerling, A. L. R. & Wiedinmyer, C. Vegetation–fire feedback reduces projected area burned under climate change. Sci. Rep. 9, 2838 (2019).
Littell, J. S., McKenzie, D., Wan, H. Y. & Cushman, S. A. Climate change and future wildfire in the western United States: an ecological approach to nonstationarity. Earths Future 6, 1097–1111 (2018).
Abatzoglou, J. T. & Kolden, C. A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 22, 1003–1020 (2013).
Goss, M. et al. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environ. Res. Lett. 15, 094016 (2020).
Bradshaw, L. S., Deeming, J. E., Burgan, R. E. & Cohen, J. D. The 1978 National Fire-Danger Rating System: Technical Documentation General Technical Report INT-169 (US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station,1984); https://doi.org/10.2737/INT-GTR-169
Hardy, C. C. & Hardy, C. E. Fire danger rating in the United States of America: an evolution since 1916. Int. J. Wildland Fire 16, 217–231 (2007).
Rabin, S. S. et al. The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geosci. Model Dev. 10, 1175–1197 (2017).
Google Scholar
Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).
Anderegg, W. R. L. Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytol. 205, 1008–1014 (2015).
Google Scholar
Konings, A. G. & Gentine, P. Global variations in ecosystem-scale isohydricity. Glob. Change Biol. 23, 891–905 (2017).
Forkel, M. et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences 16, 57–76 (2019).
Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).
Google Scholar
Trugman, A. T., Anderegg, L. D. L., Shaw, J. D. & Anderegg, W. R. L. Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition. Proc. Natl Acad. Sci. USA 117, 8532–8538 (2020).
Google Scholar
Williams, A. P. et al. Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. Int. J. Wildland Fire 24, 14–26 (2015).
Knapp, P. A. Spatio-temporal patterns of large grassland fires in the Intermountain West U.S.A. Glob. Ecol. Biogeogr. Lett. 7, 259–272 (1998).
Keeley, J. & Syphard, A. Climate change and future fire regimes: examples from California. Geosciences 6, 37 (2016).
Badia, A., Serra, P. & Modugno, S. Identifying dynamics of fire ignition probabilities in two representative Mediterranean wildland–urban interface areas. Appl. Geogr. 31, 930–940 (2011).
Fusco, E. J., Abatzoglou, J. T., Balch, J. K., Finn, J. T. & Bradley, B. A. Quantifying the human influence on fire ignition across the western USA. Ecol. Appl. 26, 2390–2401 (2016).
Syphard, A. D. et al. Human influence on California fire regimes. Ecol. Appl. 17, 1388–1402 (2007).
Google Scholar
Ager, A. A., Finney, M. A., Kerns, B. K. & Maffei, H. Modeling wildfire risk to northern spotted owl (Strix occidentalis caurina) habitat in central Oregon, USA. For. Ecol. Manage. 246, 45–56 (2007).
Thomas, D., Butry, D., Gilbert, S., Webb, D. & Fung, J. The Costs and Losses of Wildfires: A Literature Survey NIST Special Publication 1215 (NIST, 2017); https://doi.org/10.6028/NIST.SP.1215
Wang, D. et al. Economic footprint of California wildfires in 2018. Nat. Sustain. 4, 252–260 (2021).
Burke, M. et al. The changing risk and burden of wildfire in the United States. Proc. Natl Acad. Sci. USA 118, e2011048118 (2021).
García, M., Chuvieco, E., Nieto, H. & Aguado, I. Combining AVHRR and meteorological data for estimating live fuel moisture content. Remote Sens. Environ. 112, 3618–3627 (2008).
Matthews, S. Dead fuel moisture research: 1991–2012. Int. J. Wildland Fire 23, 78–92 (2014).
Cohen, J. D. et al. The National Fire-Danger Rating System: Basic Equations Vol. 82 (US Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station, 1985).
Pellizzaro, G., Cesaraccio, C., Duce, P., Ventura, A. & Zara, P. Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species. Int. J. Wildland Fire 16, 232–241 (2007).
Liu, L., Zhang, Y., Wu, S., Li, S. & Qin, D. Water memory effects and their impacts on global vegetation productivity and resilience. Sci. Rep. 8, 2962 (2018).
Google Scholar
Anderegg, W. R. L. et al. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecol. Lett. 21, 968–977 (2018).
Google Scholar
Meinzer, F. C., Johnson, D. M., Lachenbruch, B., McCulloh, K. A. & Woodruff, D. R. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 23, 922–930 (2009).
National Fuel Moisture Database (United States Forest Service, 2018); https://www.wfas.net/nfmd/public/index.php
Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2011).
Homer, C. et al. Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sens. 77, 858–864 (2011).
Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).
Boschetti, L., Roy, D., Hoffman, A. A. & Humber, M. Collection 5 MODIS Burned Area Product User Guide Version 3.0.1 (NASA EOSDIS Land Processes DAAC, 2013).
PRISM Climate Data (Prism Climate Group, Oregon State University, accessed 16 December 2020); https://prism.oregonstate.edu
Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116, G04021 (2011).
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).
Google Scholar
Montzka, C., Herbst, M., Weihermüller, L., Verhoef, A. & Vereecken, H. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves. Earth Syst. Sci. Data 9, 529–543 (2017).
Liu, S. et al. NACP MsTMIP: Unified North American Soil Map (ORNL DAAC, 2014); https://doi.org/10.3334/ornldaac/1242
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Martinuzzi, S. et al. The 2010 Wildland–Urban Interface of the Conterminous United States (USDA, 2015).
Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).
Source: Ecology - nature.com