Hoffmann, A. A. & Willi, Y. Detecting genetic responses to environmental change. Nat. Rev. Genet. 9, 421–432 (2008).
Google Scholar
Endler, J. A. Geographic Variation, Speciation and Clines (Princeton, 1977).
Huey, R. B. Rapid evolution of a geographic cline in size in an introduced fly. Science. 287, 308–309 (2000).
Google Scholar
Bridle, J. R. & Vines, T. H. Limits to evolution at range margins: when and why does adaptation fail?. Trends Ecol. Evol. 22, 140–147 (2007).
Google Scholar
Holt, R. D. & Gomulkiewik, R. How does immigration influence local adaptation? A reexamination of a familiar paradim. Am. Nat. 149, 563–572 (1997).
Ronce, O. & Kirkpatrick, M. When sources become sinks: Migrational meltdown in heterogeneous habitats. Evolution 55, 1520–1531 (2001).
Google Scholar
Bridle, J. R., Gavaz, S. & Kennington, W. J. Testing limits to adaptation along altitudinal gradients in rainforest Drosophila. Proc. R. Soc. B Biol. Sci. 276, 1507–1515 (2009).
Bridle, J. R., Polechová, J., Kawata, M. & Butlin, R. K. Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol. Lett. 13, 485–494 (2010).
Google Scholar
Holt, R. D. & Keitt, T. H. Alternative causes for range limits: A metapopulation perspective. Ecol. Lett. 3, 41–47 (2000).
Takahashi, Y. et al. Lack of genetic variation prevents adaptation at the geographic range margin in a damselfly. Mol. Ecol. 25, 4450–4460 (2016).
Google Scholar
Arnaud-Haond, S. et al. Genetic structure at range edge: Low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol. Ecol. 15, 3515–3525 (2006).
Google Scholar
Pujol, B. & Pannell, J. R. Reduced responses to selection after species range expansion. Science 321, 96 (2008).
Google Scholar
Cahill, A. E. & Levinton, J. S. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes. Mol. Ecol. 25, 515–526 (2016).
Google Scholar
Bachmann, J. C., van Rensburg, A. J., Cortazar-Chinarro, M., Laurila, A. & Van Buskirk, J. Gene flow limits adaptation along steep environmental gradients. Am. Nat. 195, E67–E86 (2020).
Google Scholar
Polechová, J. & Barton, N. H. Limits to adaptation along environmental gradients. Proc. Natl Acad. Sci. U. S. A. 112, 6401–6406 (2015).
Google Scholar
Sexton, J. P., Strauss, S. Y. & Rice, K. J. Gene flow increases fitness at the warm edge of a species’ range. Proc. Natl. Acad. Sci. U. S. A. 108, 11704–11709 (2011).
Google Scholar
Angert, A. L., Bontrager, M. G. & Aringgren, J. What do we really know about adaptation at range edges?. Annu. Rev. Ecol. Evol. Syst. 51, 341–361 (2020).
Ciborowski, J. J. H. Downstream and lateral transport of nymphs of two mayfly species (Ephemeroptera). Can. J. Fish. Aquat. Sci. 40, 2025–2029 (1983).
Bilton, D. T., Freeland, J. R. & Okamura, B. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32, 159–181 (2001).
Markwith, S. H. & Scanlon, M. J. Multiscale analysis of Hymenocallis coronaria (Amaryllidaceae) genetic diversity, genetic structure, and gene movement under the influence of unidirectional stream flow. Am. J. Bot. 94, 151–160 (2007).
Google Scholar
Congdon, B. C. Unidirectional gene flow and maintenance of genetic diversity in mosquitofish Gambusia holbrooki (Teleostei: Poeciliidae). Copeia 1995, 162 (1995).
Schaefer, J. Riffles as barriers to interpool movement by three cyprinids (Notropis boops, Campostoma anomalum and Cyprinella venusta). Freshw. Biol. 46, 379–388 (2001).
Moore, J. S., Gow, J. L., Taylor, E. B. & Hendry, A. P. Quantifying the constraining influence of gene flow on adaptive divergence in the lake-stream threespine stickleback system. Evolution 61, 2015–2026 (2007).
Google Scholar
Urabe, M. Diel change of activity and movement on natural river beds in Semisuleospira reiniana. VENUS 57, 17–27 (1998).
Hastie, L. C., Boon, P. J., Young, M. R. & Way, S. The effects of a major flood on an endangered freshwater mussel population. Biol. Conserv. 98, 107–115 (2001).
Alp, M., Keller, I., Westram, A. M. & Robinson, C. T. How river structure and biological traits influence gene flow: A population genetic study of two stream invertebrates with differing dispersal abilities. Freshw. Biol. 57, 969–981 (2012).
Terui, A. et al. Asymmetric dispersal structures a riverine metapopulation of the freshwater pearl mussel Margaritifera laevis. Ecol. Evol. 4, 3004–3014 (2014).
Google Scholar
Holomuzki, J. R. & Biggs, B. J. F. Distributional responses to flow disturbance by a stream-dwelling snail. Oikos 87, 36 (1999).
Urabe, M. Phenotypic modulation by the substratum of shell sculpture in Semisulcospira reiniana (Prosobranchia: Pleuroceridae). J. Molluscan Stud. 66, 53–60 (2000).
Gu, Q. H., Husemann, M., Ding, B., Luo, Z. & Xiong, B. X. Population genetic structure of Bellamya aeruginosa (Mollusca: Gastropoda: Viviparidae) in China: Weak divergence across large geographic distances. Ecol. Evol. 5, 4906–4919 (2015).
Google Scholar
Davis, C. D., Epps, C. W., Flitcroft, R. L. & Banks, M. A. Refining and defining riverscape genetics: How rivers influence population genetic structure. Wiley Interdiscip. Rev. Water 5(2), e1269 (2018).
De Wit, P. & Palumbi, S. R. Transcriptome-wide polymorphisms of red abalone (Haliotis rufescens) reveal patterns of gene flow and local adaptation. Mol. Ecol. 22, 2884–2897 (2013).
Google Scholar
Sun, Y.-B. et al. Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. Proc. Natl. Acad. Sci. 115, 201813593 (2018).
Willoughby, J. R., Harder, A. M., Tennessen, J. A., Scribner, K. T. & Christie, M. R. Rapid genetic adaptation to a novel environment despite a genome-wide reduction in genetic diversity. Mol. Ecol. 27, 4041–4051 (2018).
Google Scholar
De Wit, P. et al. The simple fool’s guide to population genomics via RNA-Seq: An introduction to high-throughput sequencing data analysis. Mol. Ecol. Resour. 12, 1058–1067 (2012).
Google Scholar
Yokomizo, T. & Takahashi, Y. Changes in transcriptomic response to salinity stress induce the brackish water adaptation in a freshwater snail. Sci. Rep. 10, 1–9 (2020).
Kottler, E. J., Dickman, E. E., Sexton, J. P., Emery, N. C., & Franks, S. J. Draining the swamping hypothesis: Little evidence that gene flow reduces fitness at range edges. Trends Ecol. Evol. 1–12 (2021).
Moore, J. S. & Hendry, A. P. Can gene flow have negative demographic consequences? Mixed evidence from stream threespine stickleback. Philos. Trans. R. Soc. B Biol. Sci. 364, 1533–1542 (2009).
Ingvarsson, P. K. Restoration of genetic variation lost – The genetic rescue hypothesis. Trends Ecol. Evol. 16, 62–63 (2001).
Google Scholar
Shimada, K. & Urabe, M. Drift and upstream movement of Semisulcospira libertina (Caenogastropoda: Pleuroceridae) in a natural stream. Vinus 63, 49–59 (2004).
Nyitray, L., Goodwin, E. B. & Szent-Gyorgyi, A. G. Complete primary structure of a scallop striated muscle myosin heavy chain: Sequence comparison with other heavy chains reveals regions that might be critical for regulation. J. Biol. Chem. 266, 18469–18476 (1991).
Google Scholar
Ponder, W. F., Lindberg, D. R. & Ponder, J. M. Shell, Body, and Muscles (CRC Press, Taylor and Francis Group, Boca Raton, 2019).
Lesoway, M. P., Abouheif, E. & Collin, R. Comparative transcriptomics of alternative developmental phenotypes in a marine gastropod. J. Exp. Zool. Part B Mol. Dev. Evol. 326, 151–167 (2016).
Google Scholar
Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Ann. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).
Berger, V. J. & Kharazova, A. D. Mechanisms of salinity adaptations in marine molluscs. Hydrobiologia 355, 115–126 (1997).
Google Scholar
Rivera-Ingraham, G. A. & Lignot, J. H. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: Raising the questions for future research. J. Exp. Biol. 220, 1749–1760 (2017).
Google Scholar
Jo, P. G., Choi, Y. K., An, K. W. & Choi, C. Y. Osmoregulation and mRNA expression of a heat shock protein 68 and glucose-regulated protein 78 in the Pacific oyster Crassostrea gigas in response to salinity changes. J. Aquac. 20, 205–211 (2007).
Google Scholar
Eierman, L. E. & Hare, M. P. Transcriptomic analysis of candidate osmoregulatory genes in the eastern oyster Crassostrea virginica. BMC Genomics 15, 1–15 (2014).
X. Zhao, H. Yu, L. Kong, Q. Li, Transcriptomic responses to salinity stress in the pacific oyster Crassostrea gigas. PLoS ONE 7 (2012).
Zhang, Y. et al. Proteomic basis of stress responses in the gills of the pacific oyster Crassostrea gigas. J. Proteome Res. 14, 304–317 (2015).
Google Scholar
Veiga, M. P. T., Gutierre, S. M. M., Castellano, G. C. & Freire, C. A. Tolerance of high and low salinity in the intertidal gastropod Stramonita brasiliensis (Muricidae): Behaviour and maintenance of tissue water content. J. Molluscan Stud. 82, 154–160 (2016).
Muraeva, O. A., Maltseva, A. L., Mikhailova, N. A. & Granovitch, A. I. Mechanisms of adaption to salinity stress in marine gastropods Littorina saxatilis: a proteomic analysis. Cell Tissue Biol. 10, 160–169 (2016).
Muraeva, O., Maltseva, A., Varfolomeeva, M., Mikhailova, N. & Granovitch, A. Mild osmotic stress in intertidal gastropods Littorina saxatilis and Littorina obtusata (Mollusca: Caenogastropoda): A proteomic analysis. Biol. Commun. 62, 202–213 (2017).
Maynard, A., Bible, J. M., Pespeni, M. H., Sanford, E. & Evans, T. G. Transcriptomic responses to extreme low salinity among locally adapted populations of Olympia oyster (Ostrea lurida). Mol. Ecol. 27, 4225–4240 (2018).
Google Scholar
Ma, E., Gu, X. Q., Wu, X., Xu, T. & Haddad, G. G. Mutation in pre-mRNA adenosine deaminase markedly attenuates neuronal tolerance to O2 deprivation in Drosophila melanogaster. J. Clin. Invest. 107, 685–693 (2001).
Google Scholar
Jepson, J. E. C. et al. Engineered alterations in RNA editing modulate complex behavior in Drosophila: Regulatory diversity of adenosine deaminase acting on RNA (ADAR) targets. J. Biol. Chem. 286, 8325–8337 (2011).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
Google Scholar
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
Google Scholar
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14(4), 1–13 (2013).
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
Google Scholar
Dobin, A. et al. STAR: ULTRAFAST universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Google Scholar
McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Rsearch 20, 1297–1303 (2010).
Google Scholar
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
Google Scholar
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).
Google Scholar
Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 4, 1–16 (2015).
Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
Google Scholar
Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).
Google Scholar
Mussmann, S. M., Douglas, M. R., Chafin, T. K. & Douglas, M. E. BA3-SNPs: contemporary migration reconfigured in BayesAss for next-generation sequence data. Methods Ecol. Evol. 10, 1808–1813 (2019).
Frichot, E. & François, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).
Google Scholar
Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).
Google Scholar
Mi, H. et al. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 49, D394–D403 (2021).
Google Scholar
Parrish, N., Hormozdiari, F., & Eskin, E. Assembly of non-unique insertion content using next-generation sequencing. BMC Bioinformatics. 12, S3 (2011).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
Google Scholar
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).
Google Scholar
Sun, J., Nishiyama, T., Shimizu, K. & Kadota, K. TCC: An R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics 14(1), 1–14 (2013).
Google Scholar
Source: Ecology - nature.com