in

Population transcriptomics reveals the effect of gene flow on the evolution of range limits

  • 1.

    Hoffmann, A. A. & Willi, Y. Detecting genetic responses to environmental change. Nat. Rev. Genet. 9, 421–432 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Endler, J. A. Geographic Variation, Speciation and Clines (Princeton, 1977).

    Google Scholar 

  • 3.

    Huey, R. B. Rapid evolution of a geographic cline in size in an introduced fly. Science. 287, 308–309 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Bridle, J. R. & Vines, T. H. Limits to evolution at range margins: when and why does adaptation fail?. Trends Ecol. Evol. 22, 140–147 (2007).

    PubMed 

    Google Scholar 

  • 5.

    Holt, R. D. & Gomulkiewik, R. How does immigration influence local adaptation? A reexamination of a familiar paradim. Am. Nat. 149, 563–572 (1997).

    Google Scholar 

  • 6.

    Ronce, O. & Kirkpatrick, M. When sources become sinks: Migrational meltdown in heterogeneous habitats. Evolution 55, 1520–1531 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Bridle, J. R., Gavaz, S. & Kennington, W. J. Testing limits to adaptation along altitudinal gradients in rainforest Drosophila. Proc. R. Soc. B Biol. Sci. 276, 1507–1515 (2009).

    Google Scholar 

  • 8.

    Bridle, J. R., Polechová, J., Kawata, M. & Butlin, R. K. Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol. Lett. 13, 485–494 (2010).

    PubMed 

    Google Scholar 

  • 9.

    Holt, R. D. & Keitt, T. H. Alternative causes for range limits: A metapopulation perspective. Ecol. Lett. 3, 41–47 (2000).

    Google Scholar 

  • 10.

    Takahashi, Y. et al. Lack of genetic variation prevents adaptation at the geographic range margin in a damselfly. Mol. Ecol. 25, 4450–4460 (2016).

    PubMed 

    Google Scholar 

  • 11.

    Arnaud-Haond, S. et al. Genetic structure at range edge: Low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol. Ecol. 15, 3515–3525 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Pujol, B. & Pannell, J. R. Reduced responses to selection after species range expansion. Science 321, 96 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Cahill, A. E. & Levinton, J. S. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes. Mol. Ecol. 25, 515–526 (2016).

    PubMed 

    Google Scholar 

  • 14.

    Bachmann, J. C., van Rensburg, A. J., Cortazar-Chinarro, M., Laurila, A. & Van Buskirk, J. Gene flow limits adaptation along steep environmental gradients. Am. Nat. 195, E67–E86 (2020).

    PubMed 

    Google Scholar 

  • 15.

    Polechová, J. & Barton, N. H. Limits to adaptation along environmental gradients. Proc. Natl Acad. Sci. U. S. A. 112, 6401–6406 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Sexton, J. P., Strauss, S. Y. & Rice, K. J. Gene flow increases fitness at the warm edge of a species’ range. Proc. Natl. Acad. Sci. U. S. A. 108, 11704–11709 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Angert, A. L., Bontrager, M. G. & Aringgren, J. What do we really know about adaptation at range edges?. Annu. Rev. Ecol. Evol. Syst. 51, 341–361 (2020).

    Google Scholar 

  • 18.

    Ciborowski, J. J. H. Downstream and lateral transport of nymphs of two mayfly species (Ephemeroptera). Can. J. Fish. Aquat. Sci. 40, 2025–2029 (1983).

    Google Scholar 

  • 19.

    Bilton, D. T., Freeland, J. R. & Okamura, B. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32, 159–181 (2001).

    Google Scholar 

  • 20.

    Markwith, S. H. & Scanlon, M. J. Multiscale analysis of Hymenocallis coronaria (Amaryllidaceae) genetic diversity, genetic structure, and gene movement under the influence of unidirectional stream flow. Am. J. Bot. 94, 151–160 (2007).

    PubMed 

    Google Scholar 

  • 21.

    Congdon, B. C. Unidirectional gene flow and maintenance of genetic diversity in mosquitofish Gambusia holbrooki (Teleostei: Poeciliidae). Copeia 1995, 162 (1995).

    Google Scholar 

  • 22.

    Schaefer, J. Riffles as barriers to interpool movement by three cyprinids (Notropis boops, Campostoma anomalum and Cyprinella venusta). Freshw. Biol. 46, 379–388 (2001).

    Google Scholar 

  • 23.

    Moore, J. S., Gow, J. L., Taylor, E. B. & Hendry, A. P. Quantifying the constraining influence of gene flow on adaptive divergence in the lake-stream threespine stickleback system. Evolution 61, 2015–2026 (2007).

    PubMed 

    Google Scholar 

  • 24.

    Urabe, M. Diel change of activity and movement on natural river beds in Semisuleospira reiniana. VENUS 57, 17–27 (1998).

    Google Scholar 

  • 25.

    Hastie, L. C., Boon, P. J., Young, M. R. & Way, S. The effects of a major flood on an endangered freshwater mussel population. Biol. Conserv. 98, 107–115 (2001).

    Google Scholar 

  • 26.

    Alp, M., Keller, I., Westram, A. M. & Robinson, C. T. How river structure and biological traits influence gene flow: A population genetic study of two stream invertebrates with differing dispersal abilities. Freshw. Biol. 57, 969–981 (2012).

    Google Scholar 

  • 27.

    Terui, A. et al. Asymmetric dispersal structures a riverine metapopulation of the freshwater pearl mussel Margaritifera laevis. Ecol. Evol. 4, 3004–3014 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Holomuzki, J. R. & Biggs, B. J. F. Distributional responses to flow disturbance by a stream-dwelling snail. Oikos 87, 36 (1999).

    Google Scholar 

  • 29.

    Urabe, M. Phenotypic modulation by the substratum of shell sculpture in Semisulcospira reiniana (Prosobranchia: Pleuroceridae). J. Molluscan Stud. 66, 53–60 (2000).

    Google Scholar 

  • 30.

    Gu, Q. H., Husemann, M., Ding, B., Luo, Z. & Xiong, B. X. Population genetic structure of Bellamya aeruginosa (Mollusca: Gastropoda: Viviparidae) in China: Weak divergence across large geographic distances. Ecol. Evol. 5, 4906–4919 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Davis, C. D., Epps, C. W., Flitcroft, R. L. & Banks, M. A. Refining and defining riverscape genetics: How rivers influence population genetic structure. Wiley Interdiscip. Rev. Water 5(2), e1269 (2018).

    Google Scholar 

  • 32.

    De Wit, P. & Palumbi, S. R. Transcriptome-wide polymorphisms of red abalone (Haliotis rufescens) reveal patterns of gene flow and local adaptation. Mol. Ecol. 22, 2884–2897 (2013).

    PubMed 

    Google Scholar 

  • 33.

    Sun, Y.-B. et al. Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. Proc. Natl. Acad. Sci. 115, 201813593 (2018).

    Google Scholar 

  • 34.

    Willoughby, J. R., Harder, A. M., Tennessen, J. A., Scribner, K. T. & Christie, M. R. Rapid genetic adaptation to a novel environment despite a genome-wide reduction in genetic diversity. Mol. Ecol. 27, 4041–4051 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    De Wit, P. et al. The simple fool’s guide to population genomics via RNA-Seq: An introduction to high-throughput sequencing data analysis. Mol. Ecol. Resour. 12, 1058–1067 (2012).

    PubMed 

    Google Scholar 

  • 36.

    Yokomizo, T. & Takahashi, Y. Changes in transcriptomic response to salinity stress induce the brackish water adaptation in a freshwater snail. Sci. Rep. 10, 1–9 (2020).

    Google Scholar 

  • 37.

    Kottler, E. J., Dickman, E. E., Sexton, J. P., Emery, N. C., & Franks, S. J. Draining the swamping hypothesis: Little evidence that gene flow reduces fitness at range edges. Trends Ecol. Evol. 1–12 (2021).

  • 38.

    Moore, J. S. & Hendry, A. P. Can gene flow have negative demographic consequences? Mixed evidence from stream threespine stickleback. Philos. Trans. R. Soc. B Biol. Sci. 364, 1533–1542 (2009).

    Google Scholar 

  • 39.

    Ingvarsson, P. K. Restoration of genetic variation lost – The genetic rescue hypothesis. Trends Ecol. Evol. 16, 62–63 (2001).

    PubMed 

    Google Scholar 

  • 40.

    Shimada, K. & Urabe, M. Drift and upstream movement of Semisulcospira libertina (Caenogastropoda: Pleuroceridae) in a natural stream. Vinus 63, 49–59 (2004).

    Google Scholar 

  • 41.

    Nyitray, L., Goodwin, E. B. & Szent-Gyorgyi, A. G. Complete primary structure of a scallop striated muscle myosin heavy chain: Sequence comparison with other heavy chains reveals regions that might be critical for regulation. J. Biol. Chem. 266, 18469–18476 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Ponder, W. F., Lindberg, D. R. & Ponder, J. M. Shell, Body, and Muscles (CRC Press, Taylor and Francis Group, Boca Raton, 2019).

    Google Scholar 

  • 43.

    Lesoway, M. P., Abouheif, E. & Collin, R. Comparative transcriptomics of alternative developmental phenotypes in a marine gastropod. J. Exp. Zool. Part B Mol. Dev. Evol. 326, 151–167 (2016).

    CAS 

    Google Scholar 

  • 44.

    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Ann. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).

    Google Scholar 

  • 45.

    Berger, V. J. & Kharazova, A. D. Mechanisms of salinity adaptations in marine molluscs. Hydrobiologia 355, 115–126 (1997).

    CAS 

    Google Scholar 

  • 46.

    Rivera-Ingraham, G. A. & Lignot, J. H. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: Raising the questions for future research. J. Exp. Biol. 220, 1749–1760 (2017).

    PubMed 

    Google Scholar 

  • 47.

    Jo, P. G., Choi, Y. K., An, K. W. & Choi, C. Y. Osmoregulation and mRNA expression of a heat shock protein 68 and glucose-regulated protein 78 in the Pacific oyster Crassostrea gigas in response to salinity changes. J. Aquac. 20, 205–211 (2007).

    CAS 

    Google Scholar 

  • 48.

    Eierman, L. E. & Hare, M. P. Transcriptomic analysis of candidate osmoregulatory genes in the eastern oyster Crassostrea virginica. BMC Genomics 15, 1–15 (2014).

    Google Scholar 

  • 49.

    X. Zhao, H. Yu, L. Kong, Q. Li, Transcriptomic responses to salinity stress in the pacific oyster Crassostrea gigas. PLoS ONE 7 (2012).

  • 50.

    Zhang, Y. et al. Proteomic basis of stress responses in the gills of the pacific oyster Crassostrea gigas. J. Proteome Res. 14, 304–317 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Veiga, M. P. T., Gutierre, S. M. M., Castellano, G. C. & Freire, C. A. Tolerance of high and low salinity in the intertidal gastropod Stramonita brasiliensis (Muricidae): Behaviour and maintenance of tissue water content. J. Molluscan Stud. 82, 154–160 (2016).

    Google Scholar 

  • 52.

    Muraeva, O. A., Maltseva, A. L., Mikhailova, N. A. & Granovitch, A. I. Mechanisms of adaption to salinity stress in marine gastropods Littorina saxatilis: a proteomic analysis. Cell Tissue Biol. 10, 160–169 (2016).

    Google Scholar 

  • 53.

    Muraeva, O., Maltseva, A., Varfolomeeva, M., Mikhailova, N. & Granovitch, A. Mild osmotic stress in intertidal gastropods Littorina saxatilis and Littorina obtusata (Mollusca: Caenogastropoda): A proteomic analysis. Biol. Commun. 62, 202–213 (2017).

    Google Scholar 

  • 54.

    Maynard, A., Bible, J. M., Pespeni, M. H., Sanford, E. & Evans, T. G. Transcriptomic responses to extreme low salinity among locally adapted populations of Olympia oyster (Ostrea lurida). Mol. Ecol. 27, 4225–4240 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Ma, E., Gu, X. Q., Wu, X., Xu, T. & Haddad, G. G. Mutation in pre-mRNA adenosine deaminase markedly attenuates neuronal tolerance to O2 deprivation in Drosophila melanogaster. J. Clin. Invest. 107, 685–693 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Jepson, J. E. C. et al. Engineered alterations in RNA editing modulate complex behavior in Drosophila: Regulatory diversity of adenosine deaminase acting on RNA (ADAR) targets. J. Biol. Chem. 286, 8325–8337 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14(4), 1–13 (2013).

    Google Scholar 

  • 61.

    Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Dobin, A. et al. STAR: ULTRAFAST universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 

    Google Scholar 

  • 63.

    McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Rsearch 20, 1297–1303 (2010).

    CAS 

    Google Scholar 

  • 64.

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

    CAS 

    Google Scholar 

  • 66.

    Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 4, 1–16 (2015).

    Google Scholar 

  • 67.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Mussmann, S. M., Douglas, M. R., Chafin, T. K. & Douglas, M. E. BA3-SNPs: contemporary migration reconfigured in BayesAss for next-generation sequence data. Methods Ecol. Evol. 10, 1808–1813 (2019).

    Google Scholar 

  • 70.

    Frichot, E. & François, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).

    Google Scholar 

  • 71.

    Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Mi, H. et al. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 49, D394–D403 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Parrish, N., Hormozdiari, F., & Eskin, E. Assembly of non-unique insertion content using next-generation sequencing. BMC Bioinformatics. 12, S3 (2011).

  • 75.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Sun, J., Nishiyama, T., Shimizu, K. & Kadota, K. TCC: An R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics 14(1), 1–14 (2013).

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: Anuradha Annaswamy on building smart infrastructures

    Calculating dissolved marine oxygen values based on an enhanced Benthic Foraminifera Oxygen Index