McNeely JA. editor. Global strategy on invasive alien species. IUCN (2001).
Perrings, C. et al. Biological invasion risks and the public good: An economic perspective. Conserv. Ecol. 6, 1 (2002).
Taylor, B. W. & Irwin, R. E. Linking economic activities to the distribution of exotic plants. Proc. Natl. Acad. Sci. U.S.A. 101, 17725–17730 (2004).
Google Scholar
Moore, B. A. Alien invasive species: Impacts on forests and forestry—A review (Forestry Department and Forest Resource Division FAO, FAO Corporate Document Repository, 2005).
McBeath, J. H. & McBeath, J. Invasive Species and Food Security 157–176 (In Environmental Change and Food Security in China. Springer, 2010).
Ziska, L. H., Blumenthal, D. M., Runion, G. B., Hunt, E. R. & Diaz-Soltero, H. Invasive species and climate change: An agronomic perspective. Clim. Change. 105, 13–42 (2011).
Google Scholar
Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl. Acad. Sci. U.S.A. 113, 11261–11265 (2016).
Google Scholar
Otero, R. P., Vázquez, J. P. M. & Del Estal, P. Detección de la psila africana de los cítricos, Trioza erytreae (Del Guercio, 1918) (Hemiptera: Psylloidea: Triozidae), en la Península Ibérica. Arquivos Entomolóxicos 13, 119–122 (2015).
van den Berg, M. A., Deacon, & V. E.,. Dispersal of the citrus psylla, Trioza erytreae (Hemiptera: Triozidae), in the absence of its host plants. Phytophylactica 20, 361–368 (1988).
CABI. Trioza erytreae. In: Invasive Species Compendium. Wallingford, UK: CAB International. www.cabi.org/isc. (2021).
Lounsbury, C. P. Psyllidae or jumping plant lice in Report of the Government Entomologist for the year 1896. Cape of Good Hope, South Africa, (Unpublished report), 115–118 (1897).
Ruíz-Rivero, O. et al. Insights into the origin of the invasive populations of Trioza erytreae in Europe using microsatellite markers and mtDNA barcoding approaches. Sci. Rep. 11, 1–15 (2021).
Google Scholar
Benhadi-Marín, J., Fereres, A. & Pereira, J.A. Potential areas of spread of Trioza erytreae over mainland Portugal and Spain. J. Pest Sci.1–12 (2021).
Bové, J.M. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. Plant Pathol. 7–37 (2006).
Laštuvka, Z. Climate change and its possible influence on the occurrence and importance of insect pests. Plant Prot. Sci. 45, S53–S62 (2009).
Google Scholar
Thomson, L. J., Macfadyen, S. & Hoffmann, A. A. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control. 52, 296–306 (2010).
Google Scholar
Bajwa, A.A., Farooq, M., Al-Sadi, A.M., Nawaz, A., Jabran, K. & Siddique, K.H. Impact of climate change on biology and management of wheat pests. J. Crop Prot. 105304 (2020).
Hamann, E., Blevins, C., Franks, S. J., Jameel, M. I. & Anderson, J. T. Climate change alters plant–herbivore interactions. New Phytol. 229, 1894–1910 (2021).
Google Scholar
Cornelissen, T. Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop. Entomol. 40, 155–163 (2011).
Google Scholar
Raffa, K. F. et al. Responses of tree-killing bark beetles to a changing climate. Clim. Change Insect Pests. 7, 173–201 (2015).
Google Scholar
Cocuzza, G. E. M. et al. A review on Trioza erytreae (African citrus psyllid), now in mainland Europe, and its potential risk as vector of huanglongbing (HLB) in citrus. J. Pest Sci. 90, 1–17 (2017).
Google Scholar
Vector of citrus greening disease. Aidoo, O. F., Tanga, C. M., Azrag, A. G., Mohamed, S. A., Khamis, F. M., Rasowo, B. A. … & Borgemeister, C. Temperature-based phenology model of African citrus triozid (Trioza erytreae Del Guercio). J. Appl. Entomol. 146, 1–2 (2021).
Catling, H. D., The bionomics of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: PsyUidae), 1. The influence of the flushing rhythm of citrus and factors which regulate flushing. J. Entomol. Soc. S. Afr. 32, 191–208 (1969).
Green, G. C. E., & Catling, H. D. “Weather-induced mortality of the citrus psylla, Trioza erytreae (Del Guercio)(Homoptera: Psyllidae), a vector of greening virus, in some citrus producing areas of southern Africa.” Agric. Meteorol. 8, 305–317(1971).
Vicente-Serrano, S. M., González-Hidalgo, J. C., de Luis, M. & Raventós, J. Drought patterns in the Mediterranean area: The Valencia region (eastern Spain). Clim. Res. 26, 5–15 (2004).
Google Scholar
Millán, M. M., Estrela, M. J. & Miró, J. Rainfall components: variability and spatial distribution in a Mediterranean Area (Valencia Region). J. Clim. 18, 2682–2705 (2005).
Google Scholar
Srivastava, V., Lafond, V. & Griess, V.C. Species distribution models (SDM): applications, benefits and challenges in invasive species management. CAB Rev. 14(10.1079) (2019).
Halsch, C.A., Shapiro, A.M., Fordyce, J.A., Nice, C.C., Thorne, J.H., Waetjen, D.P. & Forister, M.L. Insects and recent climate change. Proc. Natl. Acad. Sci. U.S.A. 118 (2021).
Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
Google Scholar
Lobo, J. M., Jiménez-Valverde, A. & Hortal, J. The uncertain nature of absences and their importance in species distribution modelling. ECOGEG 33, 103–114 (2010).
Guisan, A., Thuiller, W. & Zimmermann, N.E. Habitat suitability and distribution models: with applications in R. Cambridge University Press. (2017).
de la Vega, G. J. & Corley, J. C. Drosophila suzukii (Diptera: Drosophilidae) distribution modelling improves our understanding of pest range limits. Int. J. Pest Manag. 65, 217–227 (2019).
Google Scholar
Tavanpour, T., Sarafrazi, A., Mehrnejad, M.R. & Imani, S. Distribution modelling of Acrosternum spp. (Hemiptera: Pentatomidae) in south of Iran. Biologia, 74, 1627–1635 (2019).
Barton, M. G. & Terblanche, J. S. Predicting performance and survival across topographically heterogeneous landscapes: the global pest insect Helicoverpa armigera (H übner, 1808) (L epidoptera: N octuidae). Austral. Entomol. 53, 249–258 (2014).
Google Scholar
Kearney, M. & Porter, W. P. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).
Google Scholar
Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
Google Scholar
Shabani, F., Kumar, L. & Ahmadi, M. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol. Evol. 6, 5973–5986 (2016).
Google Scholar
Kearney, M. R., Wintle, B. A. & Porter, W. P. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv. Lett. 3, 203–213 (2010).
Google Scholar
Moran, V. C. & Blowers, J. R. On the biology of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). J. Entomol. Soc. S. Afr. 30, 96–106 (1967).
Samways, M.J. & Manicom, B.Q. Immigration, frequency distributions and dispersion patterns of the psyllid Trioza erytreae (Del Guercio) in a citrus orchard. J. Appl. Ecol. 463–472 (1983).
Pérez-Rodríguez, J. et al. Classical biological control of the African citrus psyllid Trioza erytreae, a major threat to the European citrus industry. Sci. Rep. 9, 1–11 (2019).
Google Scholar
Aidoo, O. F. et al. Host suitability and feeding preference of the African citrus triozid Trioza erytreae Del Guercio (Hemiptera: Triozidae), natural vector of “Candidatus Liberibacter africanus”. J. Appl. Entomol. 143, 262–270 (2019).
Google Scholar
Moran, V. C. Preliminary observations on the choice of host plants by adults of the citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). J. Entomol. Soc. S. Afr. 31, 403–410 (1968).
van den Berg, M. A., Deacon, V. E. & Thomas, C.D. Ecology of the citrus psylla, Trioza erytreae (Hemiptera: Triozidae). 3. Mating, fertility and oviposition. Phytophylactica. 23, 195–200 (1991).
Khamis, F. M. et al. DNA barcode reference library for the African citrus triozid, Trioza erytreae (Hemiptera: Triozidae): Vector of African citrus greening. J. Econ. Entomol. 110, 2637–2646 (2017).
Google Scholar
Aidoo, O. F. et al. The African citrus triozid Trioza erytreae Del Guercio (Hemiptera: Triozidae): temporal dynamics and susceptibility to entomopathogenic fungi in East Africa. Int. J. Trop. Insect Sci. 41, 563–573 (2021).
Google Scholar
Rasowo, B. A. et al. Diversity and phylogenetic analysis of endosymbionts from Trioza erytreae (Del Guercio) and its parasitoids in Kenya. J. Appl. Entomol. 145, 104–116 (2021).
Google Scholar
Espinosa-Zaragoza, S., Aguirre-Medina, J. F. & López-Martínez, V. Does the African Citrus psyllid, Trioza erytreae (Del Guercio) (Hemiptera: Triozidae), Represent a phytosanitary threat to the citrus industry in Mexico?. Insects. 12, 450 (2021).
Google Scholar
Aidoo, O.F., Tanga, C.M., Mohamed, S.A., Khamis, F.M., Baleba, S.B., Rasowo, B.A., Ambajo, J., Sétamou, M., Ekesi, S. & Borgemeister, C. Detection and monitoring of ‘Candidatus’ Liberibacter spp. vectors: African citrus triozid Trioza erytreae Del Guercio (Hemiptera: Triozidae) and Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) in citrus groves in East Africa. Agric. For. Entomol. 22, 401–409 (2020a).
Urbaneja-Bernat, P., Hernández-Suárez, E., Tena, A. & Urbaneja, A. Preventive measures to limit the spread of Trioza erytreae (Del Guercio) (Hemiptera: Triozidae) in mainland Europe. J. Appl. Entomol. 144, 553–559 (2020).
Google Scholar
Aidoo, O. F. et al. Size and shape analysis of Trioza erytreae Del Guercio (Hemiptera: Triozidae), vector of citrus huanglongbing disease. Pest Manag. Sci. 75, 760–771 (2019).
Google Scholar
Arenas-Arenas, F. J., Duran-Vila, N., Quinto, J. & Hervalejo, A. Geographic spread and inter-annual evolution of populations of Trioza erytreae in the Iberian Peninsula. Plant Pathol. 101, 1151–1157 (2019).
Google Scholar
Kalyebi, A. et al. Detection and identification of etiological agents (Liberibacter spp.) associated with citrus greening disease in Uganda. J. Agric. Sci. 16, 43–54 (2015).
Kyalo Richard., Abdel-Rahman, E.M., Mohamed, S.A., Ekesi, S., Borgemeister, C. & Landmann, T. Importance of remotely-sensed vegetation variables for predicting the spatial distribution of African citrus triozid (Trioza erytreae) in Kenya. ISPRS Int. J. Geoinf. 7, 429 (2018).
Benhadi-Marín, J., Fereres, A. & Pereira, J. A. A model to predict the expansion of Trioza erytreae throughout the Iberian Peninsula using a pest risk analysis approach. Insects. 11, 576 (2020).
Google Scholar
Moran, V. C. The development of the citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae), on Citrus limon and four indigenous host plants. J. Entomol. Soc. S. Afr. 31, 391–402 (1986).
Tamesse, J. L. Key for identification of the Hymenopteran parasitoids of the African citrus psylla Trioza erytreae Del Guercio (Hemiptera: Triozidae) in Cameroon. Afr. J. Agric. Res. 4, 085–091 (2009).
Hailu, T. & Wakgari, M. Distribution and damage of African citrus psyllids (Trioza erytreae) in Casimiroa edulis producing areas of the eastern zone of Ethiopia. Int. J. Environ. Agric. Biotech. 4, 741–750 (2019).
Urbaneja-Bernat, P. et al. Host range testing of Tamarixia dryi (Hymenoptera: Eulophidae) sourced from South Africa for classical biological control of Trioza erytreae (Hemiptera: Psyllidae) in Europe. Biol. Control. 135, 110–116 (2019).
Google Scholar
Hernández-Suárez, E., Pérez-Rodríguez, J., Suárez-Méndez, L., Urbaneja-Bernat, P., Rizza, R., Siverio, F., Piedra-Buena, A., Urbaneja, A. &Tena, A.. Control de Trioza erytreae en las Islas Canarias por el parasitoide Tamarixia dryi. Phytoma España. La revista profesional de sanidad vegetal. 28–32 (2021).
Molina, P., Martínez-Ferrer, M. T., Campos-Rivela, J. M., Riudavets, J. & Agustí, N. Development of a PCR-based method for the screening of potential predators of the African citrus psyllid Trioza erytreae (Del Guercio). Biol. Control. 160, 104661 (2021).
Google Scholar
Kumar, S., Neven, L. G., & Yee, W. L. Evaluating correlative and mechanistic niche models for assessing the risk of pest establishment. Ecosphere. 5, (2014).
Kriticos, D. J. et al. The potential distribution of invading Helicoverpa armigera in North America: Is it just a matter of time?. PLoS ONE 10, e0119618 (2015).
Google Scholar
Sutherst, R. W., Maywald, G. F. & Bourne, A. S. Including species interactions in risk assessments for global change. Glob. Chang. Biol. 13, 1843–1859 (2007).
Google Scholar
Shabani, F., Kumar, L. & Esmaeili, A. Use of CLIMEX, land use and topography to refine areas suitable for date palm cultivation in Spain under climate change scenarios. J. Earth Sci. Clim. Change. 4, 145 (2013).
Silva, R. S., Kumar, L., Shabani, F. & Picanço, M. C. Assessing the impact of global warming on worldwide open field tomato cultivation through CSIRO-Mk3•0 global climate model. J. Agric. Sci. 155, 407–420 (2016).
Google Scholar
Kriticos, D. J. et al. CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 3, 53–64 (2012).
Google Scholar
Catling, H. D. The bionomics of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae) 3. The influence of extremes of weather on survival. J. Ecol. Soc. S. Afr. 32, 273–290 (1969).
Aubert, B. Trioza erytreae Del Guercio and Diaphorina citri Kuwayama (Homoptera: Psylloidea), the two vectors of citrus greening disease: biological aspects and possible control strategy. Fruits 42, 149–162 (1987).
Gordon, H. B., Rotstayn, L. D., Mcgregor, J. L., Dix, M. R., Kowalczyk, E. A., O’farrell, S. P., Waterman, L. J., Hirst, A. C., Wilson, S. G., Collier, M. A., Watterson, I. G. & Elliott, T. I. The CSIRO Mk3 Climate System Model. CSIRO Atmospheric Research Technical Paper No. 60. Canberra: CSIRO. (2002).
Van Vuuren, D. P. & Carter, T. R. Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim. Change. 122, 415–429 (2013).
Google Scholar
Fecher, B., Friesike, S. & Hebing, M. What drives academic data sharing?. PLoS ONE 10, e0118053 (2015).
Google Scholar
Imker, H. J., Luong, H., Mischo, W. H., Schlembach, M. C. & Wiley, C. An examination of data reuse practices within highly cited articles of faculty at a research university. J. Acad. Librariansh. 47, 102369 (2021).
Google Scholar
Aidoo, O. F. et al. Distribution, degree of damage and risk of spread of Trioza erytreae (Hemiptera: Triozidae) in Kenya. J. Appl. Entomol. 143, 822–833 (2019).
Google Scholar
Mack, R.N., Simberloff, D., Mark Lonsdale, W., Evans, H., Clout, M. & Bazzaz, F.A. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).
EPPO. EPPO Global database. In: EPPO Global database, Paris, France: EPPO. https://gd.eppo.int/ (2021).
Beattie, G.A.C., Holford, P., Mabberley, D.J., Haigh, A.M. and Broadbent, P. Australia and huanglongbing. Food & Fertilizer Technology Center. (2008).
Beattie, G.A.C. & Barkley, P. Huanglongbing and its Vectors. A Pest Specific Contingency Plan for the Citrus and Nursery and Garden Industries (Version 2), February 2009. Horticulture Australia Ltd., Sydney (2009).
Plant Biosecurity. Final pest risk analysis report for ‘Candidatus Liberibacter species’ and their vectors associated with Rutaceae. Department of Agriculture, Fisheries and Forestry, Canberra. (2011).
Silva, R. S., Kumar, L., Shabani, F. & Picanço, M. C. Potential risk levels of invasive Neoleucinodes elegantalis (small tomato borer) in areas optimal for open-field Solanum lycopersicum (tomato) cultivation in the present and under predicted climate change. Pest. Manag. Sci. 73, 616–627 (2017).
Google Scholar
Santana, P. A., Kumar, L., Da Silva, R. S. & Picanço, M. C. Global geographic distribution of Tuta absoluta as affected by climate change. J. Pest Sci. 92, 1373–1385 (2019).
Google Scholar
da Graça, J. V. Citrus greening disease. Annu. Rev. Phytopathol. 29, 109–136 (1991).
Google Scholar
Li, W., Levy, L. & Hartung, J. S. Quantitative distribution of ‘Candidatus Liberibacter asiaticus’ in citrus plants with citrus huanglongbing. Phytopathology 99, 139–144 (2009).
Google Scholar
Tatineni, S. et al. In Planta Distribution of ‘Candidatus Liberbacter asiaticus’ as revealed by Polymerase Chain Reaction (PCR) and Real-time PCR. Phytopathology 98, 592–599 (2008).
Google Scholar
Aubert, B. Historical perspectives of HLB in Asia. In: International Research Conference on Huanglongbing; Proceedings of the Meeting (eds. Gottwald RT, Graham HJ) Orlando, Florida. 16–24 (2008).
microscopy and microarray analysis. Kim, J, S., Sagaram, U.S., Burns, J.K., Li, J.L. & Wang, N. Response of sweet orange (Citrus sinensis) to ‘Candidatus Liberibacter asiaticus’ infection. Phytopathology 99, 50–57 (2009).
Google Scholar
EPPO. Trioza erytreae. EPPO datasheets on pests recommended for regulation (2022). Available online. https://gd.eppo.int.
Ajene, I. J. et al. Habitat suitability and distribution potential of Liberibacter species (“Candidatus Liberibacter asiaticus” and “Candidatus Liberibacter africanus”) associated with citrus greening disease. Divers. Distrib. 26, 575–588 (2020).
Google Scholar
Manjunath, K. Á., Halbert, S. E., Ramadugu, C. H., Webb, S. U. & Lee, R. F. Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus huanglongbing in Florida. Phytopathology 98, 387–396 (2008).
Google Scholar
Halbert, S. E. & Manjunath, K. L. Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida. Fla. Entomol. 87, 330–353 (2004).
Google Scholar
Source: Ecology - nature.com