in

Pupal size as a proxy for fat content in laboratory-reared and field-collected Drosophila species

  • Parker, J. & Johnston, L. A. The proximate determinants of insect size. J. Biol. 5, 15 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Honěk, A. Intraspecific variation in body size and fecundity in insects: A general relationship. Oikos 66, 483 (1993).

    Article 

    Google Scholar 

  • Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: Three rules. Evol. Ecol. Res. 10, 251–268 (2008).

    Google Scholar 

  • Beukeboom, L. W. Size matters in insects—An introduction. Entomol. Exp. Appl. 166, 2–3 (2018).

    Article 

    Google Scholar 

  • West, S. A., Flanagan, K. E. & Godfray, H. C. J. The relationship between parasitoid size and fitness in the field, a study of Achrysocharoides zwoelferi (Hymenoptera: Eulophidae). J. Anim. Ecol. 65, 631–639 (1996).

    Article 

    Google Scholar 

  • Sagarra, L. A., Vincent, C. & Stewart, R. K. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 91, 363–367 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ellers, J., Alphen, J. J. M. V. & Sevenster, J. G. A field study of size–fitness relationships in the parasitoid Asobara tabida. J. Anim. Ecol. 67, 318–324 (1998).

    Article 

    Google Scholar 

  • Armbruster, P. & Hutchinson, R. A. Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). J. Med. Entomol. 39, 699–704 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Tantawy, A. O. & Vetukhiv, M. O. Effects of size on fecundity, longevity and viability in populations of Drosophila pseudoobscura. Am. Nat. 94, 395–403 (1960).

    Article 

    Google Scholar 

  • Lefranc, A. & Bundgaard, J. The influence of male and female body size on copulation duration and fecundity in Drosophila melanogaster. Hereditas 132, 243–247 (2004).

    Article 

    Google Scholar 

  • Atkinson, D. Temperature and organism size: A biological law for ectotherms? Adv. Ecol. Res. 25, 1–58 (1994).

    Article 

    Google Scholar 

  • Poças, G. M., Crosbie, A. E. & Mirth, C. K. When does diet matter? The roles of larval and adult nutrition in regulating adult size traits in Drosophila melanogaster. J. Insect Physiol. 139, 104051. https://doi.org/10.1016/j.jinsphys.2020.104051 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tammaru, T. Determination of adult size in a folivorous moth: constraints at instar level? Ecol. Entomol. 23, 80–89 (1998).

    Article 

    Google Scholar 

  • Miller, R. S. & Thomas, J. L. The effects of larval crowding and body size on the longevity of adult Drosophila melanogaster. Ecology 39, 118–125 (1958).

    Article 

    Google Scholar 

  • Nijhout, H. F. The control of body size in insects. Dev. Biol. 261, 1–9 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shingleton, A. W., Mirth, C. K. & Bates, P. W. Developmental model of static allometry in holometabolous insects. Proc. R. Soc. B 275, 1875–1885 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Koenraadt, C. J. M. Pupal dimensions as predictors of adult size in fitness studies of Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 45, 331–336 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stillwell, R. C., Dworkin, I., Shingleton, A. W. & Frankino, W. A. Experimental manipulation of body size to estimate morphological scaling relationships in Drosophila. JoVE 56, 3162. https://doi.org/10.3791/3162 (2011).

    Article 

    Google Scholar 

  • Shin, S.-M., Akram, W. & Lee, J.-J. Effect of body size on energy reserves in Culex pipiens pallens females (Diptera: Culicidae). Entomol. Res. 42, 163–167 (2012).

    Article 

    Google Scholar 

  • Mirth, C. K. & Riddiford, L. M. Size assessment and growth control: How adult size is determined in insects. BioEssays 29, 344–355 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chown, S. L. & Gaston, K. J. Body size variation in insects: A macroecological perspective. Biol. Rev. 85, 139–169 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Beadle, G. W., Tatum, E. L. & Clancy, C. W. Food level in relation to rate of development and eye pigmentation in Drosophila melanogaster. Biol. Bull. 75, 447–462 (1938).

    Article 

    Google Scholar 

  • Gayon, J. History of the concept of allometry1. Am. Zool. 40, 748–758 (2000).

    Google Scholar 

  • Takken, W. et al. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasit. Vectors 6, 345 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Briegel, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J. Insect Physiol. 36, 165–172 (1990).

    Article 

    Google Scholar 

  • Ellers, J. Fat and eggs: An alternative method to measure the trade-off between survival and reproduction in insect parasitoids. Neth. J. Zool. 3, 227–235 (1996).

    Google Scholar 

  • González-Tokman, D. et al. Energy storage, body size and immune response of herbivore beetles at two different elevations in Costa Rica. Rev. Biol. Trop. 67, 608–620 (2019).

    Google Scholar 

  • Timmermann, S. E. & Briegel, H. Larval growth and biosynthesis of reserves in mosquitoes. J. Insect Physiol. 45, 461–470 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Strohm, E. Factors affecting body size and fat content in a digger wasp. Oecologia 123, 184–191 (2000).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Lease, H. M. & Wolf, B. O. Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiol. Entomol. 36, 29–38 (2011).

    CAS 
    Article 

    Google Scholar 

  • Arrese, E. L. & Soulages, J. L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kühnlein, R. P. Lipid droplet-based storage fat metabolism in Drosophila. J. Lipid Res. 53, 1430–1436 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Church, R. B. & Robertson, F. W. A biochemical study of the growth of Drosophila melanogaster. J. Exp. Zool. 162, 337–351 (1966).

    Article 

    Google Scholar 

  • Merkey, A. B., Wong, C. K., Hoshizaki, D. K. & Gibbs, A. G. Energetics of metamorphosis in Drosophila melanogaster. J. Insect Physiol. 57, 1437–1445 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nestel, D., Tolmasky, D., Rabossi, A. & Quesada-Allué, L. A. Lipid, carbohydrates and protein patterns during metamorphosis of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 96, 237–244 (2003).

    CAS 
    Article 

    Google Scholar 

  • Lee, K. P. & Jang, T. Exploring the nutritional basis of starvation resistance in Drosophila melanogaster. Funct. Ecol. 28, 1144–1155 (2014).

    Article 

    Google Scholar 

  • Hahn, D. A. & Denlinger, D. L. Meeting the energetic demands of insect diapause: Nutrient storage and utilization. J. Insect Physiol. 53, 760–773 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tejeda, M. T. et al. Effects of size, sex and teneral resources on the resistance to hydric stress in the tephritid fruit fly Anastrepha ludens. J. Insect Physiol. 70, 73–80 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hoffmann, A. A., Hallas, R., Anderson, A. R. & Telonis-Scott, M. Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. J. Evol. Biol. 18, 804–810 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bryk, B., Hahn, K., Cohen, S. M. & Teleman, A. A. MAP4K3 regulates body size and metabolism in Drosophila. Dev. Biol. 344, 150–157 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gasser, M., Kaiser, M., Berrigan, D. & Stearns, S. C. Life-history correlates of evolution under high and low adult mortality. Evolution 54, 1260–1272 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chippindale, A. K., Chu, T. J. F. & Rose, M. R. Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster. Evolution 50, 753 (1996).

    PubMed 
    Article 

    Google Scholar 

  • Kristensen, T. N., Overgaard, J., Loeschcke, V. & Mayntz, D. Dietary protein content affects evolution for body size, body fat and viability in Drosophila melanogaster. Biol. Lett. 7, 269–272 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Juarez-Carreño, S. et al. Body-fat sensor triggers ribosome maturation in the steroidogenic gland to initiate sexual maturation in Drosophila. Cell Rep. 37, 109830 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Markow, T. A. The secret lives of Drosophila flies. Elife 4, e06793 (2015).

    PubMed Central 
    Article 

    Google Scholar 

  • Choma, M. A., Suter, M. J., Vakoc, B. J., Bouma, B. E. & Tearney, G. J. Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems. Dis. Model. Mech. 4, 411–420 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Morgan, T. H., Sturtevant, A. H., Muller, H. J. & Bridges, C. B. The Mechanism of Mendelian Heredity (H. Holt, 1923).

    Google Scholar 

  • Dobzhansky, T. The influence of the quantity and quality of chromosomal material on the size of the cells in Drosophila melanogaster. Wilhelm Roux Arch. Entwickl Mech. Org. 115, 363–379 (1929).

    PubMed 
    Article 

    Google Scholar 

  • Musselman, L. P. & Kühnlein, R. P. Drosophila as a model to study obesity and metabolic disease. J. Exp. Biol. 221, 163881 (2018).

    Article 

    Google Scholar 

  • DiAngelo, J. R. & Birnbaum, M. J. Regulation of fat cell mass by insulin in Drosophila melanogaster. Mol. Cell. Biol. 29, 6341–6352 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rovenko, B. M. et al. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J. Insect Physiol. 79, 42–54 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hardy, C. M. et al. Obesity-associated cardiac dysfunction in starvation-selected Drosophila melanogaster. Am. J. Physiol.-Regul. Integr. Compar. Physiol. 309, R658–R667 (2015).

    CAS 
    Article 

    Google Scholar 

  • Hardy, C. M. et al. Genome-wide analysis of starvation-selected Drosophila melanogaster—A genetic model of obesity. Mol. Biol. Evol. 35, 50–65 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Musselman, L. P. et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model. Mech. 4, 842–849 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Henry, Y., Renault, D. & Colinet, H. Hormesis-like effect of mild larval crowding on thermotolerance in Drosophila flies. J. Exp. Biol. 221, 169342 (2018).

    Article 

    Google Scholar 

  • Bulletin, E. P. P. O. Drosophila suzukii. EPPO Bull. 43, 417–424 (2013).

    Article 

    Google Scholar 

  • Bächli, G., Vilela, C. R., Escher, S. A. & Saura, A. The Drosophilidae (Diptera) of Fennoscandia and Denmark (Brill Academic Publishers, 2004).

    Book 

    Google Scholar 

  • Markow, T. A. & O’Grady, P. M. Drosophila: A Guide to Species Identification and Use (Elsevier, 2006).

    Google Scholar 

  • Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Visser, B. et al. Variation in lipid synthesis, but genetic homogeneity, among Leptopilina parasitic wasp populations. Ecol. Evol. 8, 7355–7364 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Williams, C. M., Thomas, R. H., MacMillan, H. A., Marshall, K. E. & Sinclair, B. J. Triacylglyceride measurement in small quantities of homogenised insect tissue: Comparisons and caveats. J. Insect Physiol. 57, 1602–1613 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • Fox, J. & Weisberg, S. An R Companion to Applied Regression 2nd edn. (Sage, 2011).

    Google Scholar 

  • Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).

    Google Scholar 

  • Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. In Model Selection and Multimodel Inference (ed. Burnham, K. P.) (Springer, 2002).

    MATH 

    Google Scholar 

  • Crawley, M. J. The R Book (Wiley, 2007).

    MATH 
    Book 

    Google Scholar 

  • Borash, D. J. & Ho, G. T. Patterns of selection: Stress resistance and energy storage in density-dependent populations of Drosophila melanogaster. J. Insect Physiol. 47, 1349–1356 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Klepsatel, P., Procházka, E. & Gáliková, M. Crowding of Drosophila larvae affects lifespan and other life-history traits via reduced availability of dietary yeast. Exp. Gerontol. 110, 298–308 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Henry, Y., Overgaard, J. & Colinet, H. Dietary nutrient balance shapes phenotypic traits of Drosophila melanogaster in interaction with gut microbiota. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 241, 110626 (2020).

    CAS 
    Article 

    Google Scholar 

  • Ireland, S. & Turner, B. The effects of larval crowding and food type on the size and development of the blowfly, Calliphora vomitoria. Forensic Sci. Int. 159, 175–181 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Saunders, D. S. & Bee, A. Effects of larval crowding on size and fecundity of the blow fly, Calliphora vicina (Diptera: Calliphoridae). EJE 92, 615–622 (2013).

    Google Scholar 

  • Ziegler, R. Changes in lipid and carbohydrate metabolism during starvation in adult Manduca sexta. J. Comp. Physiol. B 161, 125–131 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ojeda-Avila, T., Arthur Woods, H. & Raguso, R. A. Effects of dietary variation on growth, composition, and maturation of Manduca sexta (Sphingidae: Lepidoptera). J. Insect Physiol. 49, 293–306 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Borash, D. J., Gibbs, A. G., Joshi, A. & Mueller, L. D. A genetic polymorphism maintained by natural selection in a temporally varying environment. Am. Nat. 151, 148. https://doi.org/10.1086/286108 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Klepsatel, P., Knoblochová, D., Girish, T. N., Dircksen, H. & Gáliková, M. The influence of developmental diet on reproduction and metabolism in Drosophila. BMC Evol. Biol. 20, 93 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Matzkin, L. M., Johnson, S., Paight, C., Bozinovic, G. & Markow, T. A. Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila. J. Nutr. 141, 1127–1133 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Musselman, L. P. et al. Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila. J. Biol. Chem. 288, 8028–8042 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reeve, M. W., Fowler, K. & Partridge, L. Increased body size confers greater fitness at lower experimental temperature in male Drosophila melanogaster. J. Evol. Biol. 13, 836–844 (2000).

    Article 

    Google Scholar 

  • Lounibos, L. P. et al. Does temperature affect the outcome of larval competition between Aedes aegypti and Aedes albopictus?. J. Vector Ecol. 27, 86–95 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Bergland, A. O., Genissel, A., Nuzhdin, S. V. & Tatar, M. Quantitative trait loci affecting phenotypic plasticity and the allometric relationship of ovariole number and thorax length in Drosophila melanogaster. Genetics 180, 567–582 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Holm, S. et al. A comparative perspective on longevity: The effect of body size dominates over ecology in moths. J. Evol. Biol. 29, 2422–2435 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nunney, L. The response to selection for fast larval development in Drosophila melanogaster and its effect on adult weight: An example of a fitness trade-off. Evolution 50, 1193–1204 (1996).

    PubMed 
    Article 

    Google Scholar 

  • Partridge, L. & Farquhar, M. Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size. Anim. Behav. 31, 871–877 (1983).

    Article 

    Google Scholar 

  • Markow, T. A. & Ricker, J. P. Male size, developmental stability, and mating success in natural populations of three Drosophila species. Heredity 69, 122–127 (1992).

    PubMed 
    Article 

    Google Scholar 

  • Wikelski, M. & Romero, L. M. Body size, performance and fitness in galapagos marine iguanas. Integr. Comp. Biol. 43, 376–386 (2003).

    PubMed 
    Article 

    Google Scholar 

  • van Buskirk, J. & Crowder, L. B. Life-history variation in marine turtles. Copeia 1994, 66–81 (1994).

    Article 

    Google Scholar 

  • Broderick, A. C., Glen, F., Godley, B. J. & Hays, G. C. Variation in reproductive output of marine turtles. J. Exp. Mar. Biol. Ecol. 288, 95–109 (2003).

    Article 

    Google Scholar 

  • Wauters, L. A. et al. Effects of spatio-temporal variation in food supply on red squirrel Sciurus vulgaris body size and body mass and its consequences for some fitness components. Ecography 30, 51–65 (2007).

    Article 

    Google Scholar 

  • Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).

    PubMed 
    Article 

    Google Scholar 

  • Reim, C., Teuschl, Y. & Blanckenhorn, W. U. Size-dependent effects of temperature and food stress on energy reserves and starvation resistance in yellow dung flies. Evol. Ecol. Res. 8, 1215–1234 (2006).

    Google Scholar 

  • Kölliker-Ott, U. M., Blows, M. W. & Hoffmann, A. A. Are wing size, wing shape and asymmetry related to field fitness of Trichogramma egg parasitoids? Oikos 100, 563–573 (2003).

    Article 

    Google Scholar 

  • Knapp, M. Relative importance of sex, pre-starvation body mass and structural body size in the determination of exceptional starvation resistance of Anchomenus dorsalis (Coleoptera: Carabidae). PLoS ONE 11, e0151459 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lue, C.-H. et al. DROP: Molecular voucher database for identification of Drosophila parasitoids. Mol. Ecol. Resour. 21, 2437–2454 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Visser, B. et al. Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proc. Natl. Acad. Sci. 107, 8677–8682 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Visser B et al. Why do
    many parasitoids lack adult triglyceride accumulation, despite functioning fatty acid biosynthesis machinery? EcoEvoRxiv:
    https://doi.org/10.32942/osf.io/zpf4j

  • Arakawa, R., Miura, M. & Fujita, M. Effects of host species on the body size, fecundity, and longevity of Trissolcus mitsukurii (Hymenoptera: Scelionidae), a solitary egg parasitoid of stink bugs. Appl. Entomol. Zool. 39, 177–181 (2004).

    Article 

    Google Scholar 

  • Visser, B., Alborn, H.T., Rondeaux, S. et al. Phenotypic plasticity explains apparent reverse evolution of fat synthesis in parasitic
    wasps. Sci Rep 11, 7751 (2021). https://doi.org/10.1038/s41598-021-86736-8.

  • Krüger, A. P. et al. Effects of irradiation dose on sterility induction and quality parameters of Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol. 111, 741–746 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Nikolouli, K. et al. Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii. J. Pest Sci. 91, 1–15 (2017).

    Google Scholar 

  • Nikolouli, K., Sassù, F., Mouton, L., Stauffer, C. & Bourtzis, K. Combining sterile and incompatible insect techniques for the population suppression of Drosophila suzukii. J. Pest Sci. 93, 647–661 (2020).

    CAS 
    Article 

    Google Scholar 

  • Calkins, C. O. & Parker, A. G. Sterile insect quality. In Sterile Insect Technique (eds Dyck, V. A. et al.) 269–296 (Springer, 2005).

    Chapter 

    Google Scholar 


  • Source: Ecology - nature.com

    Structural diagnosis of benthic invertebrate communities in relation to salinity gradient in Baltic coastal lake ecosystems using biological trait analysis

    Sustainable management practices vary with farm size in US organic crop production