Hart, M. B. et al. The search for the origin of the planktic foraminifera. J. Geol. Soc. Lond. 160, 341–343 (2003).
Google Scholar
Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).
Google Scholar
Gradstein, F., Waskowska, A. & Glinskikh, L. The first 40 million years of planktonic foraminifera. Geosci 11, 1–25 (2021).
Google Scholar
Ujiié, Y., Kimoto, K. & Pawlowski, J. Molecular evidence for an independent origin of modern triserial planktonic foraminifera from benthic ancestors. Mar. Micropaleontol. 69, 334–340 (2008).
Google Scholar
Darling, K. F. et al. Surviving mass extinction by bridging the benthic/planktic divide. Proc. Natl Acad. Sci. USA 106, 12629–33 (2009).
Google Scholar
Kucera, M. et al. Caught in the act: anatomy of an ongoing benthic–planktonic transition in a marine protist. J. Plankton Res. 39, 436–449 (2017).
Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–352 (2011).
Google Scholar
Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 403–429 (2020).
Google Scholar
Pawlowski, J., Holzmann, M. & Tyszka, J. New supraordinal classification of foraminifera: molecules meet morphology. Mar. Micropaleontol. 100, 1–10 (2013).
Google Scholar
Lecroq, B. et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc. Natl Acad. Sci. USA 108, 13177–13182 (2011).
Google Scholar
Pawlowski, J. et al. The evolution of early foraminifera. Proc. Natl Acad. Sci. USA 100, 11494–8 (2003).
Google Scholar
Vachard, D. Macroevolution and biostratigraphy of paleozoic foraminifers. in Stratigraphy and Timescales (Ed. Montenari, M.) Vol. 1, 257–323 (Academic Press, 2016).
Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).
Google Scholar
Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).
Google Scholar
Holzmann, M. & Pawlowski, J. An updated classification of rotaliid foraminifera based on ribosomal DNA phylogeny. Mar. Micropaleontol. 132, 18–34 (2017).
Google Scholar
John, A. W. G. The regular occurrence of Reophax Scottie Chaster, a benthic foraminiferan, in plankton samples from the North Sea. J. Micropalaeontol. 6, 61–63 (1987).
Google Scholar
Kucera, M. et al. Caught in the act: anatomy of an ongoing benthic-planktonic transition in a marine protist. J. Plankton Res. 39, 436–449 (2017).
Darling, K. F., Wade, C. M., Kroon, D. & Brown, A. J. L. Planktic foraminiferal molecular evolution and their polyphyletic origins from benthic taxa. Mar. Micropaleontol. 30, 251–266 (1997).
Google Scholar
Church, S. H., Ryan, J. F. & Dunn, C. W. Automation and evaluation of the SOWH test with SOWHAT. Syst. Biol. 64, 1048–1058 (2015).
Google Scholar
Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).
Google Scholar
Pawlowski, J. et al. Extreme differences in rates of molecular evolution of foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. Mol. Biol. Evol. 14, 498–505 (1997).
Google Scholar
Peijnenburg, K. T. C. A. et al. The origin and diversification of pteropods precede past perturbations in the Earth’s carbon cycle. Proc. Natl Acad. Sci. USA 117, 25609–25617 (2020).
Google Scholar
O’Brien, C. L. et al. Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth-Sci. Rev. 172, 224–247 (2017).
Google Scholar
Olsson, R. K., Berggren, W. A., Hemleben, C. & Huber, B. T. Atlas of Paleocene planktonic foraminifera. Smithson. Contrib. Paleobiol. 1–252 https://doi.org/10.5479/si.00810266.85.1 (1999).
Arenillas, I. & Arz, J. A. Benthic origin and earliest evolution of the first planktonic foraminifera after the Cretaceous/Palaeogene boundary mass extinction. Hist. Biol. 29, 25–42 (2017).
Google Scholar
Huber, B. T., Petrizzo, M. R. & MacLeod, K. G. Planktonic foraminiferal endemism at southern high latitudes following the terminal cretaceous extinction. J. Foraminifer. Res. 50, 382–402 (2020).
Google Scholar
Arenillas, I., Arz, J. A. & Gilabert, V. An updated suprageneric classification of planktic foraminifera after growing evidence of multiple benthic-planktic transitions. Spanish J. Palaeontol. https://doi.org/10.7203/sjp.22189 (2022).
Culver, S. J. Benthic foraminifera across the Cretaceous–Tertiary (K–T) boundary: a review. Mar. Micropaleontol. 47, 177–226 (2003).
Google Scholar
Widmark, J. G. V. & Malmgren, B. A. Benthic foraminiferal changes across the Cretaceous/Tertiary boundary in the deep sea; DSDP sites 525, 527, and 465. J. Foraminifer. Res. 22, 81–113 (1992).
Google Scholar
Rigaud, S., Martini, R. & Vachard, D. Early evolution and new classification of the order Robertinida (foraminifera). J. Foraminifer. Res. 45, 3–28 (2015).
Google Scholar
Rigaud, S., Granier, B. & Masse, J. P. Aragonitic foraminifers: an unsuspected wall diversity. J. Syst. Palaeontol. 19, 461–488 (2021).
Google Scholar
Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).
Google Scholar
Morard, R. et al. PFR2: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution. Mol. Ecol. Resour. 15, 1472–1485 (2015).
Google Scholar
Morard, R. et al. Genetic and morphological divergence in the warm-water planktonic foraminifera genus Globigerinoides. PLoS ONE 14, 1–30 (2019).
Google Scholar
Morard, R., Vollmar, N. M., Greco, M. & Kucera, M. Unassigned diversity of planktonic foraminifera from environmental sequencing revealed as known but neglected species. PLoS ONE 14, e0213936 (2019).
Google Scholar
Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinforma. 10, 1–9 (2009).
Google Scholar
R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).
Liaw, A. & Wiener, M. Classification and Regression by randomForest. R. N. 2, 18–22 (2002).
Lang, M. et al. mlr3: a modern object-oriented machine learning framework in R. J. Open Source Softw. 4, 1903 (2019).
Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Google Scholar
Darriba, D. et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37, 291–294 (2020).
Google Scholar
Kozlov, A. M. et al. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).
Google Scholar
Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).
Google Scholar
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, 293–296 (2021).
Google Scholar
Löytynoja, A. & Goldman, N. WebPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinform. 11, 1–7 (2010).
Ronquist, F. et al. MrBayes 3. 2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
Google Scholar
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Google Scholar
Dos Reis, M., Donoghue, P. C. J. & Yang, Z. Bayesian molecular clock dating of species divergences in the genomics era. Nat. Rev. Genet. 17, 71–80 (2016).
Google Scholar
Song, H., Tong, J. & Chen, Z. Q. Evolutionary dynamics of the Permian-Triassic foraminifer size: Evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 98–110 (2011).
Google Scholar
Copestake, P. & Johnson, B. Lower Jurassic Foraminifera from the Llanbedr (Mochras Farm) Borehole, North Wales, UK. Monogr. Palaeontogr. Soc. 167, 1–403 (2013).
Google Scholar
Rigaud, S. & Blau, J. New Robertinid Foraminifers from the Early Jurassic of Adnet, Austria and Their Evolutionary Importance. Acta Palaeontol. Pol. 61, 721–734 (2016).
Google Scholar
Boudagher-fadel, M. K. Evolution and Geological Significance of Larger Benthic Foraminifera. Evolution and Geological Significance of Larger Benthic Foraminifera (UCL Press, 2018).
Piuz, A. & Meister, C. Cenomanian rotaliids (Foraminiferida) from Oman and Morocco. Swiss J. Palaeontol. 132, 81–97 (2013).
Google Scholar
Kucera, M. & Schönfeld, J. The origin of modern oceanic foraminiferal faunas and Neogene climate change. in Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies. (ed. The Micropalaeontological Society, S. P.) 409–425 (The Geological Society, 2007).
Drummond, A. J. & Suchard, M. A. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 8, 114 (2010).
Google Scholar
Rambaut, A. FigTree version 1.3.1. http://tree.bio.ed.ac.uk (2009).
Groussin, M., Pawlowski, J. & Yang, Z. Bayesian relaxed clock estimation of divergence times in foraminifera. Mol. Phylogenet. Evol. 61, 157–166 (2011).
Google Scholar
Loeblich Jr, A. R. & Tappan, H. Foraminiferal Genera and Their Classification (Springer, 1988).
Source: Ecology - nature.com