in

Rhizosphere enzyme activities and microorganisms drive the transformation of organic and inorganic carbon in saline–alkali soil region

  • 1.

    Canadell, J. G. et al. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks. Environ. Sci. Policy 10, 370–384. https://doi.org/10.1016/j.envsci.2007.01.009 (2007).

    Article 

    Google Scholar 

  • 2.

    Bradford, M. A., Fierer, N. & Reynolds, J. F. Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils. Funct. Ecol. 22, 964–974. https://doi.org/10.1111/j.1365-2435.2008.01404.x (2008).

    Article 

    Google Scholar 

  • 3.

    He, S., Liang, Z., Han, R., Wang, Y. & Liu, G. Soil carbon dynamics during grass restoration on abandoned sloping cropland in the hilly area of the Loess Plateau China. Catena 137, 679–685. https://doi.org/10.1016/j.catena.2015.01.027 (2016).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Schuman, G. E., Janzen, H. H. & Herrick, J. E. Soil carbon dynamics and potential carbon sequestration by rangelands. Environ. Pollut. 116, 391–396. https://doi.org/10.1016/s0269-7491(01)00215-9 (2002).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Duan, C. et al. Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicol. Environ. Saf. 156, 106–115. https://doi.org/10.1016/j.ecoenv.2018.03.015 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 6.

    Yang, J. et al. A proposal of “core enzyme” bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis. Environ. Pollut. 213, 760–769. https://doi.org/10.1016/j.envpol.2016.03.030 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590. https://doi.org/10.1038/nrmicro.2017.87 (2017).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Wan, Z. & Song, C. Advance on response of soil enzyme activity to ecological environment. Chin. J. Soil Sci. 40(4), 951–956 (2009).

    CAS 

    Google Scholar 

  • 9.

    Liu, G. et al. Soil enzymes as indicators of saline soil fertility under various soil amendments. Agric. Ecosyst. Environ. 237, 274–279 (2017).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Li, Z., Chaonian, F., Mengjie, L. & Huanchao, Z. Nutrient and biological characteristics of different salinized soils in coastal areas of northern Jiangsu Province. J. Anhui Agric. Univ. 46, 86–92 (2019).

    Google Scholar 

  • 11.

    Bueis, T., Turrion, M. B., Bravo, F., Pando, V. & Muscolo, A. Factors determining enzyme activities in soils under Pinus halepensis and Pinus sylvestris plantations in Spain: A basis for establishing sustainable forest management strategies. Ann. For. Sci. https://doi.org/10.1007/s13595-018-0720-z (2018).

    Article 

    Google Scholar 

  • 12.

    Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x (2008).

    Article 
    PubMed 

    Google Scholar 

  • 13.

    Marx, M. C., Kandeler, E., Wood, M., Wermbter, N. & Jarvis, S. C. Exploring the enzymatic landscape: Distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol. Biochem. 37, 35–48. https://doi.org/10.1016/j.soilbio.2004.05.024 (2005).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Bais, et al. The role of root exudates in rhizosphere interations with plants and other organisms. Annu. Rev. Plant Biol. 2006(57), 233–266 (2006).

    Article 

    Google Scholar 

  • 15.

    Qu, Y. et al. Soil enzyme activity and microbial metabolic function diversity in soda saline–alkali rice paddy fields of northeast China. Sustainability 12, 15. https://doi.org/10.3390/su122310095 (2020).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Salinas-Garcia, J. R. et al. Tillage effects on microbial biomass and nutrient distribution in soils under rain-fed corn production in central-western Mexico. Soil Till. Res. 66, 143–152. https://doi.org/10.1016/s0167-1987(02)00022-3 (2002).

    Article 

    Google Scholar 

  • 17.

    Roldán, A., Salinas-García, J. R., Alguacil, M. M. & Caravaca, F. Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Appl. Soil Ecol. 30, 11–20. https://doi.org/10.1016/j.apsoil.2005.01.004 (2005).

    Article 

    Google Scholar 

  • 18.

    Lenton, T. M. & Huntingford, C. Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Glob. Change Biol. 9, 1333–1352. https://doi.org/10.1046/j.1365-2486.2003.00674.x (2003).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Rey, A., Petsikos, C., Jarvis, P. G. & Grace, J. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. Eur. J. Soil Sci. 56(5), 589–599 (2005).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Wang, X., Zhag, Y., Lv, J. & Fan, X. Effect of long term different fertilization on properties of soil organic matter and humic acids. Sci. Agric. Sinica 33, 78–84 (2000).

    Google Scholar 

  • 21.

    Wei, Y. et al. Updated information on soil salinity in a typical oasis agroecosystem and desert-oasis ecotone: Case study conducted along the Tarim River. China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135387 (2019).

    Article 

    Google Scholar 

  • 22.

    Huang, L. H. et al. Impact of cultivation year, nitrogen fertilization rate and irrigation water quality on soil salinity and soil nitrogen in saline-sodic paddy fields in Northeast China. J. Agric. Sci. 154, 632–646. https://doi.org/10.1017/s002185961500057x (2015).

    Article 

    Google Scholar 

  • 23.

    Liu, Q., Cui, B. & Yang, Z. Dynamics of the soil water and solute in the sodic saline soil in the Songnen Plain China. Environ. Earth Sci. 59, 837–845. https://doi.org/10.1007/s12665-009-0079-4 (2009).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Lu, Y. & Xu, H. Distribution characteristic of soil organic carbon fraction in different types of wetland in Hongze Lake of China. Sci. World J. 2014, 487961. https://doi.org/10.1155/2014/487961 (2014).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Nitsch, P., Kaupenjohann, M. & Wulf, M. Forest continuity, soil depth and tree species are important parameters for SOC stocks in an old forest (Templiner Buchheide, northeast Germany). Geoderma 310, 65–76. https://doi.org/10.1016/j.geoderma.2017.08.041 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Zhang, Z., Lu, X., Song, X., Guo, Y. & Xue, Z. Soil C, N and P stoichiometry of deyeuxia angustifolia and carex lasiocarpa wetlands in Sanjiang Plain, northeast China. J. Soil Sediment. 12, 1309–1315. https://doi.org/10.1007/s11368-012-0551-8 (2012).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Bian, J., Tang, J., Zhang, L., Ma, H. & Zhao, J. Arsenic distribution and geological factors in the western Jilin province China. J. Geochem. Explor. 112, 347–356. https://doi.org/10.1016/j.gexplo.2011.10.003 (2012).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Zheng, B. Technical Guide for Soil Analysis (China Agriculture Press, 2013).

    Google Scholar 

  • 29.

    Paul, E. A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 98, 109–126. https://doi.org/10.1016/j.soilbio.2016.04.001 (2016).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Solly, E. F., Schoning, I., Herold, N., Trumbore, S. E. & Schrumpf, M. No depth-dependence of fine root litter decomposition in temperate beech forest soils. Plant Soil 393, 273–282. https://doi.org/10.1007/s11104-015-2492-7 (2015).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Steinweg, J. M., Kostka, J. E., Hanson, P. J. & Schadt, C. W. Temperature sensitivity of extracellular enzymes differs with peat depth but not with season in an ombrotrophic bog. Soil Biol. Biochem. 125, 244–250. https://doi.org/10.1016/j.soilbio.2018.07.001 (2018).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Hartman, W. H., Richardson, C. J., Vilgalys, R. & Bruland, G. L. Environmental and anthropogenic controls over bacterial communities in wetland soils. P. Natl. Acad. Sci. USA 105, 17842–17847. https://doi.org/10.1073/pnas.0808254105 (2008).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Andersen, R., Chapman, S. J. & Artz, R. R. E. Microbial communities in natural and disturbed peatlands: A review. Soil Biol. Biochem. 57, 979–994. https://doi.org/10.1016/j.soilbio.2012.10.003 (2013).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Huang, B., Wang, J., Jin, H. & Xu, S. Effects of long- term application fertilizer on carbon storage in calcareous meadow soil. J. Agro-Environ. Sci. 25, 161–164 (2006).

    CAS 

    Google Scholar 

  • 35.

    Bacmaga, M., Wyszkowska, J. & Kucharski, J. Bioaugmentation of soil contaminated with azoxystrobin. Water Air Soil Poll. 228, 9. https://doi.org/10.1007/s11270-016-3200-9 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Miller, G., Suzuki, N., Ciftci-Yilmaz, S. & Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33, 453–467 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 37.

    Pathak, H. & Rao, D. L. N. Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol. Biochem. 30, 695–702. https://doi.org/10.1016/S0038-0717(97)00208-3 (1998).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Xiao, Y. et al. Response of soil labile organic carbon fractions to forest conversions in subtropical China. Trop. Ecol. 57, 691–699 (2016).

    CAS 

    Google Scholar 

  • 39.

    Broszat, M. et al. Wastewater irrigation increases the abundance of potentially harmful gammaproteobacteria in soils in Mezquital Valley. Mexico. Appl. Environ. Microbiol. 80, 5282–5291 (2014).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Liu, Y. et al. Alphaproteobacteria dominate active 2-methyl-4-chlorophenoxyacetic acid herbicide degraders in agricultural soil and drilosphere. Environ. Microbiol. 13, 991–1009 (2011).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Baumann, K. et al. Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry 114, 201–212 (2013).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Chambers, L. G., Guevara, R., Boyer, J. N., Troxler, T. G. & Davis, S. E. Effects of salinity and inundation on microbial community structure and fFunction in a mangrove peat soil. Wetlands 36, 361–371 (2016).

    Article 

    Google Scholar 

  • 44.

    Wong, V. N. L., Greene, R. S. B., Dalal, R. C. & Murphy, B. W. Soil carbon dynamics in saline and sodic soils: A review. Soil Use Manage. 26, 2–11 (2010).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: Anuradha Annaswamy on building smart infrastructures

    Calculating dissolved marine oxygen values based on an enhanced Benthic Foraminifera Oxygen Index