Canadell, J. G. et al. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks. Environ. Sci. Policy 10, 370–384. https://doi.org/10.1016/j.envsci.2007.01.009 (2007).
Google Scholar
Bradford, M. A., Fierer, N. & Reynolds, J. F. Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils. Funct. Ecol. 22, 964–974. https://doi.org/10.1111/j.1365-2435.2008.01404.x (2008).
Google Scholar
He, S., Liang, Z., Han, R., Wang, Y. & Liu, G. Soil carbon dynamics during grass restoration on abandoned sloping cropland in the hilly area of the Loess Plateau China. Catena 137, 679–685. https://doi.org/10.1016/j.catena.2015.01.027 (2016).
Google Scholar
Schuman, G. E., Janzen, H. H. & Herrick, J. E. Soil carbon dynamics and potential carbon sequestration by rangelands. Environ. Pollut. 116, 391–396. https://doi.org/10.1016/s0269-7491(01)00215-9 (2002).
Google Scholar
Duan, C. et al. Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicol. Environ. Saf. 156, 106–115. https://doi.org/10.1016/j.ecoenv.2018.03.015 (2018).
Google Scholar
Yang, J. et al. A proposal of “core enzyme” bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis. Environ. Pollut. 213, 760–769. https://doi.org/10.1016/j.envpol.2016.03.030 (2016).
Google Scholar
Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590. https://doi.org/10.1038/nrmicro.2017.87 (2017).
Google Scholar
Wan, Z. & Song, C. Advance on response of soil enzyme activity to ecological environment. Chin. J. Soil Sci. 40(4), 951–956 (2009).
Google Scholar
Liu, G. et al. Soil enzymes as indicators of saline soil fertility under various soil amendments. Agric. Ecosyst. Environ. 237, 274–279 (2017).
Google Scholar
Li, Z., Chaonian, F., Mengjie, L. & Huanchao, Z. Nutrient and biological characteristics of different salinized soils in coastal areas of northern Jiangsu Province. J. Anhui Agric. Univ. 46, 86–92 (2019).
Bueis, T., Turrion, M. B., Bravo, F., Pando, V. & Muscolo, A. Factors determining enzyme activities in soils under Pinus halepensis and Pinus sylvestris plantations in Spain: A basis for establishing sustainable forest management strategies. Ann. For. Sci. https://doi.org/10.1007/s13595-018-0720-z (2018).
Google Scholar
Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x (2008).
Google Scholar
Marx, M. C., Kandeler, E., Wood, M., Wermbter, N. & Jarvis, S. C. Exploring the enzymatic landscape: Distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol. Biochem. 37, 35–48. https://doi.org/10.1016/j.soilbio.2004.05.024 (2005).
Google Scholar
Bais, et al. The role of root exudates in rhizosphere interations with plants and other organisms. Annu. Rev. Plant Biol. 2006(57), 233–266 (2006).
Google Scholar
Qu, Y. et al. Soil enzyme activity and microbial metabolic function diversity in soda saline–alkali rice paddy fields of northeast China. Sustainability 12, 15. https://doi.org/10.3390/su122310095 (2020).
Google Scholar
Salinas-Garcia, J. R. et al. Tillage effects on microbial biomass and nutrient distribution in soils under rain-fed corn production in central-western Mexico. Soil Till. Res. 66, 143–152. https://doi.org/10.1016/s0167-1987(02)00022-3 (2002).
Google Scholar
Roldán, A., Salinas-García, J. R., Alguacil, M. M. & Caravaca, F. Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Appl. Soil Ecol. 30, 11–20. https://doi.org/10.1016/j.apsoil.2005.01.004 (2005).
Google Scholar
Lenton, T. M. & Huntingford, C. Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Glob. Change Biol. 9, 1333–1352. https://doi.org/10.1046/j.1365-2486.2003.00674.x (2003).
Google Scholar
Rey, A., Petsikos, C., Jarvis, P. G. & Grace, J. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. Eur. J. Soil Sci. 56(5), 589–599 (2005).
Google Scholar
Wang, X., Zhag, Y., Lv, J. & Fan, X. Effect of long term different fertilization on properties of soil organic matter and humic acids. Sci. Agric. Sinica 33, 78–84 (2000).
Wei, Y. et al. Updated information on soil salinity in a typical oasis agroecosystem and desert-oasis ecotone: Case study conducted along the Tarim River. China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135387 (2019).
Google Scholar
Huang, L. H. et al. Impact of cultivation year, nitrogen fertilization rate and irrigation water quality on soil salinity and soil nitrogen in saline-sodic paddy fields in Northeast China. J. Agric. Sci. 154, 632–646. https://doi.org/10.1017/s002185961500057x (2015).
Google Scholar
Liu, Q., Cui, B. & Yang, Z. Dynamics of the soil water and solute in the sodic saline soil in the Songnen Plain China. Environ. Earth Sci. 59, 837–845. https://doi.org/10.1007/s12665-009-0079-4 (2009).
Google Scholar
Lu, Y. & Xu, H. Distribution characteristic of soil organic carbon fraction in different types of wetland in Hongze Lake of China. Sci. World J. 2014, 487961. https://doi.org/10.1155/2014/487961 (2014).
Google Scholar
Nitsch, P., Kaupenjohann, M. & Wulf, M. Forest continuity, soil depth and tree species are important parameters for SOC stocks in an old forest (Templiner Buchheide, northeast Germany). Geoderma 310, 65–76. https://doi.org/10.1016/j.geoderma.2017.08.041 (2018).
Google Scholar
Zhang, Z., Lu, X., Song, X., Guo, Y. & Xue, Z. Soil C, N and P stoichiometry of deyeuxia angustifolia and carex lasiocarpa wetlands in Sanjiang Plain, northeast China. J. Soil Sediment. 12, 1309–1315. https://doi.org/10.1007/s11368-012-0551-8 (2012).
Google Scholar
Bian, J., Tang, J., Zhang, L., Ma, H. & Zhao, J. Arsenic distribution and geological factors in the western Jilin province China. J. Geochem. Explor. 112, 347–356. https://doi.org/10.1016/j.gexplo.2011.10.003 (2012).
Google Scholar
Zheng, B. Technical Guide for Soil Analysis (China Agriculture Press, 2013).
Paul, E. A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 98, 109–126. https://doi.org/10.1016/j.soilbio.2016.04.001 (2016).
Google Scholar
Solly, E. F., Schoning, I., Herold, N., Trumbore, S. E. & Schrumpf, M. No depth-dependence of fine root litter decomposition in temperate beech forest soils. Plant Soil 393, 273–282. https://doi.org/10.1007/s11104-015-2492-7 (2015).
Google Scholar
Steinweg, J. M., Kostka, J. E., Hanson, P. J. & Schadt, C. W. Temperature sensitivity of extracellular enzymes differs with peat depth but not with season in an ombrotrophic bog. Soil Biol. Biochem. 125, 244–250. https://doi.org/10.1016/j.soilbio.2018.07.001 (2018).
Google Scholar
Hartman, W. H., Richardson, C. J., Vilgalys, R. & Bruland, G. L. Environmental and anthropogenic controls over bacterial communities in wetland soils. P. Natl. Acad. Sci. USA 105, 17842–17847. https://doi.org/10.1073/pnas.0808254105 (2008).
Google Scholar
Andersen, R., Chapman, S. J. & Artz, R. R. E. Microbial communities in natural and disturbed peatlands: A review. Soil Biol. Biochem. 57, 979–994. https://doi.org/10.1016/j.soilbio.2012.10.003 (2013).
Google Scholar
Huang, B., Wang, J., Jin, H. & Xu, S. Effects of long- term application fertilizer on carbon storage in calcareous meadow soil. J. Agro-Environ. Sci. 25, 161–164 (2006).
Google Scholar
Bacmaga, M., Wyszkowska, J. & Kucharski, J. Bioaugmentation of soil contaminated with azoxystrobin. Water Air Soil Poll. 228, 9. https://doi.org/10.1007/s11270-016-3200-9 (2017).
Google Scholar
Miller, G., Suzuki, N., Ciftci-Yilmaz, S. & Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33, 453–467 (2010).
Google Scholar
Pathak, H. & Rao, D. L. N. Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol. Biochem. 30, 695–702. https://doi.org/10.1016/S0038-0717(97)00208-3 (1998).
Google Scholar
Xiao, Y. et al. Response of soil labile organic carbon fractions to forest conversions in subtropical China. Trop. Ecol. 57, 691–699 (2016).
Google Scholar
Broszat, M. et al. Wastewater irrigation increases the abundance of potentially harmful gammaproteobacteria in soils in Mezquital Valley. Mexico. Appl. Environ. Microbiol. 80, 5282–5291 (2014).
Google Scholar
Liu, Y. et al. Alphaproteobacteria dominate active 2-methyl-4-chlorophenoxyacetic acid herbicide degraders in agricultural soil and drilosphere. Environ. Microbiol. 13, 991–1009 (2011).
Google Scholar
Baumann, K. et al. Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry 114, 201–212 (2013).
Google Scholar
Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).
Google Scholar
Chambers, L. G., Guevara, R., Boyer, J. N., Troxler, T. G. & Davis, S. E. Effects of salinity and inundation on microbial community structure and fFunction in a mangrove peat soil. Wetlands 36, 361–371 (2016).
Google Scholar
Wong, V. N. L., Greene, R. S. B., Dalal, R. C. & Murphy, B. W. Soil carbon dynamics in saline and sodic soils: A review. Soil Use Manage. 26, 2–11 (2010).
Google Scholar
Source: Ecology - nature.com