European Road Federation. European Road Statistics: Yearbook 2020. https://erf.be/statistics/road-network-2020/ (2020)
Hungarian Public Road Nonprofit Pte Ltd Co. https://internet.kozut.hu/ (2020)
Findlay, T., Scott, C. & Bourdages, J. Response time of wetland biodiversity to road construction on adjacent lands. Conserv. Biol. 14, 86–94. https://doi.org/10.1046/j.1523-1739.2000.99086.x (2000).
Google Scholar
Forman, R. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29, 207–231. https://doi.org/10.1046/j.1466-822x.1998.00308.x (1998).
Google Scholar
Dean, W. R. J., Seymour, C. L., Joseph, G. S. & Foord, S. H. A review of the impacts of roads on wildlife in semi-arid regions. Diversity 11, 81. https://doi.org/10.3390/d11050081 (2019).
Google Scholar
Auffret, A. G., Berg, J. & Cousins, S. A. The geography of human‐mediated dispersal. Divers. Distrib. 20, 1450–1456. https://doi.org/10.1111/ddi.12251 (2014)
Niggemann, M., Jetzkowitz, J., Brunzel, S., Wichmann, M. C. & Bialozyt, R. Distribution patterns of plants explained by human movement behaviour. Ecol. Model. 220, 1339–1346. https://doi.org/10.1016/j.ecolmodel.2009.02.018 (2009).
Google Scholar
Clifford, H. T. Seed dispersal by motor vehicles. J. Ecol. 47, 311–315. https://doi.org/10.2307/2257368 (1959).
Google Scholar
Rew, L. J. et al. Hitching a ride: seed accrual rates on different types of vehicles. J. Environ. Manage. 206, 547–555. https://doi.org/10.1016/j.jenvman.2017.10.060 (2018).
Google Scholar
Schmidt, W. Plant dispersal by motor cars. Vegetatio 80, 147–152 (1989).
Google Scholar
Ross, S. M. Vegetation change on main road verges in south-east Scotland. J. Biogeogr. 13, 109–117. https://doi.org/10.2307/2844986 (1986).
Google Scholar
Vitalos, M. & Karrer, G. Dispersal of Ambrosia artemisiifolia seeds along roads: the contribution of traffic and mowing machines. Neobiota 8, 53–60 (2009).
Tikka, P. M., Högmander, H. & Koski, P. S. Road and railway verges serve as dispersal corridors for grassland plants. Landscape Ecol. 16, 659–666. https://doi.org/10.1023/A:101312052 (2001).
Google Scholar
Forman, R. T. Estimate of the area affected ecologically by the road system in the United States. Conserv. Biol. 14, 31–35. https://doi.org/10.1046/j.1523-1739.2000.99299.x (2000).
Google Scholar
Gelbard, J. L. & Belnap, J. Roads as conduits for exotic plant invasions in a semiarid landscape. Conserv. Biol. 17, 420–432. https://doi.org/10.1046/j.1523-1739.2003.01408.x (2003).
Google Scholar
Kalwij, J. M., Milton, S. J. & Mcgeoch, M. A. Road verges as invasion corridors? A spatial hierarchical test in an arid ecosystem. Landscape Ecol. 23, 439–451. https://doi.org/10.1007/s10980-008-9201-3 (2008).
Google Scholar
Essl, F., Dullinger, S. & Kleinbauer, I. Changes in the spatio-temporal patterns and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria. Preslia 81, 119–133 (2009).
Follak, S., Dullinger, S., Kleinbauer, I., Moser, D. & Essl, F. Invasion dynamics of three allergenic invasive Asteraceae (Ambrosia trifida, Artemisia annua, Iva xanthiifolia) in central and eastern Europe. Preslia 85, 41–61 (2013).
Skálová, H., Guo, W. Y., Wild, J. & Pyšek, P. Ambrosia artemisiifolia in the Czech Republic: history of invasion, current distribution and prediction of future spread. Preslia 89, 1–16. https://doi.org/10.23855/preslia.2017.001 (2017).
Google Scholar
Clarke, A. Macroecology comes of age. Trends Ecol. Evol. 17, 352–353. https://doi.org/10.1016/s0169-5347(02)02552-1 (2002).
Google Scholar
Török, K. et al. Invasion gateways and corridors in the Carpathian Basin: Biological invasions in Hungary. Biol. Inv. 5, 349–356. https://doi.org/10.1023/B:BINV.0000005570.19429.73 (2003).
Google Scholar
Pyšek, P., Jarošík, V. & Kucera, T. Patterns of invasion in temperate nature reserves. – Biol. Conserv. 104, 13–24. https://doi.org/10.1016/S0006-3207(01)00150-1 (2002).
Greenberg, C. H., Crownover, S. H. & Gordon, D. R. Roadside soils: a corridor for invasion of xeric shrub by nonindigenous plants. Nat. Area. J. 17, 99–109 (1997).
Köles, P. Útpályák szennyeződése és a vízlefolyás környezeti hatása. Hidrol. Táj. 1, 14–16 (1994).
Amrhein, C., Strong, J. E. & Mosher, P. A. Effect of deicing salts on metal and organic matter mobilization in roadside soils. Environ. Sci. Technol. 26, 703–709. https://doi.org/10.1021/es00028a006 (1992).
Google Scholar
Davison, A. W. The effects of de-icing salt on roadside verges. I. Soil and plant analysis. J. Appl. Ecol. 8, 555–561. https://doi.org/10.2307/2402891 (1971).
Google Scholar
Bouraoui, D., Cekstere, G., Osvalde, A., Vollenweider, P. & Rasmann, S. Deicing salt pollution affects the foliar traits and arthropods’ biodiversity of lime trees in Riga’s street greeneries. Front. Ecol. Evol. 7, 282. https://doi.org/10.3389/fevo.2019.00282 (2019).
Google Scholar
Asensio, E. et al. Accumulation of de-icing salt and leaching in Spanish soils surrounding roadways. Int. J. Env. Res. Pub. He. 14, 1498. https://doi.org/10.3390/ijerph14121498 (2017).
Google Scholar
Hintz, W. D. & Relyea, R. A. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshwater Biol. 64, 1081–1097. https://doi.org/10.1111/fwb.13286 (2019).
Google Scholar
Zehetner, F., Rosenfellner, U., Mentler, A. & Gerzabek, M. H. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a main road-forest interface. Water Air Soil Poll. 198, 125–132. https://doi.org/10.1007/s11270-008-9831-8 (2009).
Google Scholar
Flowers, T. J. & Colmer, T. D. Salinity tolerance in halophytes. New Phytol. 179, 945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x (2008).
Google Scholar
Barbour, M. G. Is any angiosperm an obligate halophyte?. Am. Midl. Nat. 84, 105–120. https://doi.org/10.2307/2423730 (1970).
Google Scholar
Mitsch, W. J. & Gosselink, J. G. Wetlands 3rd edn. (Wiley, 2000).
Sabovljevic´, M., Sabovljevic´, A. Contribution to the coastal bryophytes of the Northern Mediterranean: Are there halophytes among bryophytes? Phytol. Balc. 13, 131–135 (2007).
Krauss, K. W. & Ball, M. C. On the halophytic nature of mangroves. Trees 27, 7–11. https://doi.org/10.1007/s00468-012-0767-7 (2013).
Google Scholar
Gerstberger, P. Plantago coronopus subsp. commutata introduced as a roadside halophyte in central Europe. Tuexenia 21, 249–256 (2001).
Wrobel, M., Tomaszewicz, T. & Chudecka, J. Floristic diversity and spatial distribution of roadside halophytes along forest and field roads in Szczecin lowland (West Poland). Pol. J. Ecol. 54, 303–309 (2006).
Šerá, B. Road vegetation in Central Europe – an example from the Czech Republic. Biologia 63, 1085–1088. https://doi.org/10.2478/s11756-008-0152-6 (2008).
Google Scholar
Kaplan, Z. et al. Distributions of vascular plants in the Czech Republic. Part 2. Preslia 88, 229–322 (2016).
Schmidt, D., Dítětová, Z., Horváth, A. & Szűcs, P. Coastal newcomer on motorways: the invasion of Plantago coronopus in Hungary. Studia Bot. Hung. 47, 319–334 (2016).
Google Scholar
Fekete, R. et al. Rapid continental spread of a salt-tolerant plant along the European road network. Biol. Inv. 23, 2661–2674. https://doi.org/10.1007/s10530-021-02531-6 (2021).
Google Scholar
Schmidt, D., Bauer, N., Fekete, R., Haszonits, G. & Süveges, K. Continuing spread of Plantago coronopus along Hungarian roads. Kitaibelia 25, 19–26. https://doi.org/10.17542/kit.25.19 (2020).
Schmidt, D. New data to spreading of Plantago coronopus in Hungary. Kitaibelia 26, 99–101. https://doi.org/10.17542/kit.26.99 (2021).
Fekete, R., Mesterházy, A., Valkó, O. & Molnár, V. A. A hitchhiker from the beach: the spread of the maritime halophyte Cochlearia danica along salted continental roads. Preslia 90, 23–37. https://doi.org/10.23855/preslia.2018.023 (2018).
Schmotzer, A. Ceratocephala testiculata (Crantz) Roth and further data to the flora of the foothills of Bükk Mts. (‘Bükkalja’, NE Hungary). Kitaibelia 20, 81–142. https://doi.org/10.17542/kit.20.81 (2015).
Google Scholar
Barbosa, N. P., Fernandes, G. W., Carneiro, M. A. & Júnior, L. A. Distribution of non-native invasive species and soil properties in proximity to paved roads and unpaved roads in a quartzitic mountainous grassland of southeastern Brazil (rupestrian fields). Biol. Inv. 12, 3745–3755. https://doi.org/10.1007/s10530-010-9767-y (2010).
Google Scholar
Pollnac, F., Seipel, T., Repath, C. & Re, L. J. Plant invasion at landscape and local scales along roadways in the mountainous region of the Greater Yellowstone Ecosystem. Biol. Inv. 14, 1753–1763. https://doi.org/10.1007/s10530-012-0188-y (2012).
Google Scholar
McDougall, K. L. et al. Running off the road: roadside non-native plants invading mountain vegetation. Biol. Inv. 20, 3461–3473. https://doi.org/10.1007/s10530-018-1787-z (2018).
Google Scholar
US Fish and Wildlife Service. Jesup’s milk-vetch (Astragalus robbinsii var. jesupii) 5-Year Review: Summary and Evaluation., USA: US Fish and Wildlife Service, 14 pp. (2008)
US Fish and Wildlife Service. Showy Indian Clover (Trifolium amoenum) 5-Year Review: Summary and Evaluation., USA: US Fish and Wildlife Service, 12 pp. (2008)
Zarzyczki, K. & Szeląg, Z. Red list of the vascular plants in Poland. (W. Szafer Institute of Botany, Polish Academy of Sciences, 2006)
Bartha D. et al. Magyarország edényes növényfajainak elterjedési atlasza. Distribution atlas of vascular plants of Hungary (ed. Bartha, D.) (Nyugat-magyarorszagi Egyetem Kiadó, Sopron, 2015).
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2019)
Király G. ed. Új magyar füvészkönyv. Magyarország hajtásos növényei. (Aggteleki Nemzeti Park Igazgatóság, 2009)
Abrol, I. P., Yadav, J. S. P., & Massoud, F. I. Salt-affected soils and their management (No. 39). Food & Agriculture Org, (1988).
R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018)
Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R package version 2, 74 (2007).
Knowles, J. E. & Frederick, C. Prediction intervals from merMod objects. https://www.cran.rproject.org/web/packages/merTools/vignettes/Using_predictInterval.html (2016).
The Plant List. Version 1.1. Published on the Internet. http://www.theplantlist.org/ (2020)
Schmidt, D., Haszonits, Gy. & Korda, M. Spreading of native Spergularia species along roadsides of Transdanubia (NW Hungary). Kitaibelia 23, 141–150. https://doi.org/10.17542/kit.23.141 (2018).
Google Scholar
Englmaier, P. & Wilhalm, T. Alien grasses (Poaceae) in the flora of the Eastern Alps: contribution to an excursion flora of Austria and the Eastern Alps. Neilreichia 9, 177–245 (2018).
Takács, A., & Zsólyomi, T. Adatok a Taktaköz flórájának ismeretéhez. Data to the knowledge of the vascular flora of the Taktaköz (N-Hungary). Kitaibelia 15, 25–34 (2010).
Bauer, N. Casual occurrences of Limonium gmelinii (Willd.) Kuntze subsp. hungaricum (Klokov) Soó in roadside verges. Kitaibelia 20, 300 (2015).
Kocián, P. et al. Limonka Gmelinova (Limonium gmelinii) na dálnicích České republiky. Acta Rer. Nat. 19, 1–6 (2016).
Hohla, M., Diewald, W. & Király, G. Limonium gmelini – eine Steppenpflanze an österreichischen Autobahnen sowie weitere Neuigkeiten zur Flora Österreichs. Stapfia 103, 127–150 (2015).
Hanselmann D. Neue Zierde für den Straßensaum–Erstnachweis von Limonium gmelini (Willd.) Kuntze in Deutschland (und weitere Anmerkungen zu aktuellen Entwicklungen der Straßenbegleitflora in Rheinland-Pfalz). Mainz. Nat. Wiss. Arch. 54, 155–156 (2017).
Scheuer, C. Dupla Graecensia Fungorum (2012, 201–350. Sz.). Fritschiana 72, 9–60 (2012).
John, H. & Stolle, J. Aktuelle Nachweise von Farn-und Blütenpflanzen im südlichen Sachsen-Anhalt. Mitt Florist. Kart. Sachsen-Anhalt 16, 43–57 (2011).
Yannitsaros, A. Additions to the flora of Kithira (Greece) I. Willdenowia 28, 77–94 (1998).
Google Scholar
Dogan, Y., Baslar, S., Celik, A., Mert, H. H. & Ozturk, M. A study of the roadside plants of west Anatolia Turkey. Nat. Croat. 1, 63–80 (2004).
Arnold, N., Baydoun, S., Chalak, L. & Raus, T. A contribution to the flora and ethnobotanical knowledge of Mount Hermon Lebanon. Flora Mediterr. 25, 13–55. https://doi.org/10.7320/flmedit25.013 (2015).
Google Scholar
Kárpáti, Z. Kiegészítés Soó – Jávorka: A magyar növényvilág kézikönyve c. munkájához. Bot. Közl. 45, 71–76 (1954).
Scott, N. E. & Davison, A. W. De-icing salt and the invasion of road verges by maritime plants. Watsonia 14, 41–52 (1982).
Fukarek, F., Knapp, M. D., Rauschert, S., Weinert, E. Karten der Pflanzenverbreitung in der DDR. Hercynia NF Leipzig 1 Serie 15, 229–320 (1978).
Bresinsky, A. & Schundfelder, P. Mitteilungen der Arbeitsgemeinschaft zur floristischen Kartierung Bayerns. In: A. Bresinsky et al. (eds.). 7: 25–34 (Anmerkungen zu einigen Musterkarten für einen Atlas der Flora Bayerns,1980).
Mirek, Z. & Trzonska-Tacik, D. Spreading of Puccinellia distans (L.) Parl. along the roads in southern Poland. Ekol. Pol. 92: 345–352 (1981).
Valei, F. G. Bromus carinatus Hook. et Arn. en Puccinellia distans (L.) Parl. in midden Nederland. Gorteria 9, 232–234 (1979).
Badmin, J. S. Records of Puccinellia distans growing inland in Kent and northern France. Trans. Kent Field Club 8, 115 (1980).
Butler, J. D., Hughes, T. D., Sanks, G. D. & Craig, P. R. Salt causes problems along Illinois main roads. Illinois Res. 13, 3–4 (1971).
Catling, P. M. & McKay, S. M. A review of the occurrence of halophytes in the eastern Great Lakes region. Michigan Bot. 20, 167–179 (1981).
Hohla, M. & Melzer, H. Floristisches von den Autobahnen der Bundesländer Salzburg, Oberösterreich Niederösterreich und Burgenland. Linz. Biol. Beitr. 35, 1307–1326 (2003).
Kocián, P. Novelties in the roadside flora of Moravia and Silesia (Czech Republic) – 1. Spergularia media. Acta Mus. Siles. Sci. Nat. 64, 263–267. https://doi.org/10.1515/cszma-2015-0033 (2015).
Randall, R. E. An annotated flora of Tory Island, Co Donegal (vc H35). Ir. Nat. J. 27, 373–381 (2004).
Rossbach, R. P. Spergularia in North and South America. Contrib. Gray Herb. Harvard Univ. 130, 57–217 (1940).
Truscott, A. M., Palmer, S. C. F., McGowan, G. M., Cape, J. N. & Smart, S. Vegetation composition of roadside verges in Scotland: the effects of nitrogen deposition, disturbance and management. Environment. Poll. 136, 109–118 https://doi.org/10.1016/j.envpol.2004.12.009 (2005).
Lonsdale, W. M. & Lane, A. M. Tourist vehicles as vectors of weed seeds in Kakadu National Park Northern Australia. Biol. Conserv. 69, 277–283 (1994).
Google Scholar
Borhidi, A. & Sánta, A. Vörös könyv Magyarország növénytársulásairól. I-II. 711 pp (Természetbúvár Alapítvány Kiadó, 2007).
Bekker, R. et al. Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Funct. Ecol. 12, 834–842. https://doi.org/10.1046/j.1365-2435.1998.00252.x (1998).
Google Scholar
Westoby, M., Leishman, M., Lord, J., Poorter, H. & Schoen, D. J. Comparative ecology of seed size and dispersal. Philos. T. R. Soc. B. 351, 1309–1318 (1996).
Google Scholar
Török, P. et al. New thousand-seed weight records of the Pannonian flora and their application in analysing Social Behaviour Types. Acta Bot. Hung. 55, 429–472. https://doi.org/10.1556/ABot.55.2013.3-4.17 (2013).
Google Scholar
Török, P. et al. New measurements of thousand-seed weights of species in the Pannonian flora. Acta Bot. Hung. 58, 187–198. https://doi.org/10.1556/034.58.2016.1-2.10 (2016).
Google Scholar
Dawson, W., Burslem, D. F. & Hulme, P. E. Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J. Ecol. 97, 657–665. https://doi.org/10.1111/j.1365-2745.2009.01519.x (2009).
Google Scholar
Ungar, I. A. & Binet, P. Factors influencing seed dormancy in Spergularia media (L.) C Presl. Aquat. Bot. 1, 45–55 (1975).
Google Scholar
Moravcova, L. & Frantik, T. Germination ecology of Puccinellia distans and P. limosa. Biologia, Sect. Bot. 57,441–448 (2002).
Filep, Gy. Talajtani alapismeretek II. Egyetemi jegyzet. (Debreceni Agrártudományi Egyetem, Debrecen, 1999)
Grigore, M. N., & Toma, C. Anatomical adaptations of halophytes. A review of classic literature and recent, Springer https://doi.org/10.1007/978-3-319-66480-4 (2017).
Grigore, M. N., Ivanescu, L. & Toma, C. Halophytes: an integrative anatomical study. Springer https://doi.org/10.1007/978-3-319-05729-3 (2014).
Google Scholar
Vakhrusheva, D. V. Mesostructure of photosynthetic apparatus in C3 plants in the arid zone of Central Asia, Extended Abst. Cand. Sci. (Biol.) Dissertation, Leningrad (1989).
Breckle, S. W. Salinity tolerance of different halophyte types. In Genetic aspects of plant mineral nutrition Springer, Dordrecht, pp. 167–175. https://doi.org/10.1007/978-94-009-2053-8_26 (1990).
Glenn, E. P., Brown, J. J. & Blumwald, E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 18, 227–255. https://doi.org/10.1080/07352689991309207 (1999).
Google Scholar
Flowers, T. J. & Yeo, A. R. Ion relations of plants under drought and salinity. Aust. J. Plant Physiol. 13, 75–91. https://doi.org/10.1071/PP9860075 (1986).
Google Scholar
Pătruţ, D. I., Pop, A., & Coste, I. Biodiversitatea halofitelor din Câmpia Banatului. Eurobit, (2005).
Skultety, D. & Matthews, J. W. Urbanization and roads drive non-native plant invasion in the Chicago Metropolitan region. Biol. Inv. 19(2553–2566), 2553–2566. https://doi.org/10.1007/s10530-017-1464-7 (2017).
Google Scholar
Source: Ecology - nature.com