in

Seasonal variation in space use and territoriality in a large mammal (Sus scrofa)

  • Schoener, T. W. & Schoener, A. Intraspecific variation in home-range size in some Anolis lizards. Ecology 63, 809–823 (1982).

    Google Scholar 

  • Grigione, M. M. et al. Ecological and allometric determinants of home-range size for mountain lions (Puma concolor). Anim. Conserv. 5(4), 317–324 (2002).

    Google Scholar 

  • Wolf, J. B., Mawdsley, D., Trillmich, F. & James, R. Social structure in a colonial mammal: Unravelling hidden structural layers and their foundations by network analysis. Anim. Behav. 74, 1293–1302 (2007).

    Google Scholar 

  • Gehrt, S. D. & Frttzell, E. K. Sexual differences in home ranges of raccoons. J. Mammal. 78, 921–931 (1997).

    Google Scholar 

  • Clutton-Brock, T. H., Iason, G. R. & Guinness, F. E. Sexual segregation and density-related changes in habitat use in male and female Red deer (Cervus elaphus). J. Zool. 211(2), 275–289 (1987).

    Google Scholar 

  • Ji, W., White, P. C. & Clout, M. N. Contact rates between possums revealed by proximity data loggers. J. Appl. Ecol. 42(3), 595–604 (2005).

    Google Scholar 

  • Böhm, M., Palphramand, K. L., Newton-Cross, G., Hutchings, M. R. & White, P. C. Dynamic interactions among badgers: Implications for sociality and disease transmission. J. Anim. Ecol. 77, 735–745 (2008).

    PubMed 

    Google Scholar 

  • Hamede, R. K., Bashford, J., McCallum, H. & Jones, M. Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: Using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol. Lett. 12, 1147–1157 (2009).

    PubMed 

    Google Scholar 

  • Ostfeld, R. S., Glass, G. E. & Keesing, F. Spatial epidemiology: An emerging (or re-emerging) discipline. Trends Ecol. Evol. 20, 328–336 (2005).

    PubMed 

    Google Scholar 

  • Mitani, J. C., Watts, D. P. & Amsler, S. J. Lethal intergroup aggression leads to territorial expansion in wild chimpanzees. Curr. Biol. 20, R507–R508 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Cubaynes, S. et al. Density-dependent intraspecific aggression regulates survival in northern Yellowstone wolves (Canis lupus). J. Anim. Ecol. 83, 1344–1356 (2014).

    PubMed 

    Google Scholar 

  • Wittemyer, G., Getz, W. M., Vollrath, F. & Douglas-Hamilton, I. Social dominance, seasonal movements, and spatial segregation in African elephants: A contribution to conservation behavior. Behav. Ecol. Sociobiol. 61, 1919–1931 (2007).

    Google Scholar 

  • McGuire, J. M., Scribner, K. T. & Congdon, J. D. Spatial aspects of movements, mating patterns, and nest distributions influence gene flow among population subunits of Blanding’s turtles (Emydoidea blandingii). Conserv. Genet. 14, 1029–1042 (2013).

    Google Scholar 

  • Kurvers, R. H., Krause, J., Croft, D. P., Wilson, A. D. & Wolf, M. The evolutionary and ecological consequences of animal social networks: Emerging issues. Trends Ecol. Evol. 29, 326–335 (2014).

    PubMed 

    Google Scholar 

  • Loveridge, A. J. & Macdonald, D. W. Seasonality in spatial organization and dispersal of sympatric jackals (Canis mesomelas and C. adustus): Implications for rabies management. J. Zool. 253, 101–111 (2001).

    Google Scholar 

  • Snijders, L., Blumstein, D. T., Stanley, C. R. & Franks, D. W. Animal social network theory can help wildlife conservation. Trends Ecol. Evol. 32(8), 567–577 (2017).

    PubMed 

    Google Scholar 

  • Burt, W. H. Territoriality and home range concepts as applied to mammals. J. Mammal. 24, 57–63 (1943).

    Google Scholar 

  • Schoener, T. W. Sizes of feeding territories among birds. Ecology 49, 123–141 (1968).

    Google Scholar 

  • Kaufman, J. H. On the definitions and functions of dominance and territoriality. Biol. Revue 58, 1–20 (1983).

    Google Scholar 

  • Maher, C. R. & Lott, D. F. Definitions of territoriality used in the study of variation in vertebrate spacing systems. Anim. Behav. 49, 1581–1597 (1995).

    Google Scholar 

  • Powell, R. A. Animal home ranges and territories and home range estimators. Res. Tech. Anim. Ecol. Controversies Conseq. 1, 476 (2000).

    Google Scholar 

  • Kerr, G. D. & Bull, C. M. Exclusive core areas in overlapping ranges of the sleepy lizard, Tiliqua rugosa. Behav. Ecol. 17, 380–391 (2006).

    Google Scholar 

  • DiPierro, E., Molinari, A., Tosi, G. & Wauters, L. A. Exclusive core areas and intrasexual territoriality in Eurasian red squirrels (Sciurus vulgaris) revealed by incremental cluster polygon analysis. Ecol. Res. 23, 529–542 (2008).

    Google Scholar 

  • Poole, K. G. Spatial organization of a lynx population. Can. J. Zool. 73, 632–641 (1995).

    ADS 

    Google Scholar 

  • Chamberlain, M. J. & Leopold, B. D. Spatio-temporal relationships among adult raccoons (Procyon lotor) in central Mississippi. Am. Midl. Nat. 148, 297–309 (2002).

    Google Scholar 

  • Darden, S. K. & Dabelsteen, T. Acoustic territorial signaling in a small, socially monogamous canid. Anim. Behav. 75(3), 905–912 (2008).

    Google Scholar 

  • Gabor, T. M., Hellgren, E. C., Van Den Bussche, R. A. & Silvy, N. J. Demography, sociospatial behaviour and genetics of feral pigs (Sus scrofa) in a semi-arid environment. J. Zool. 247(3), 311–322 (1999).

    Google Scholar 

  • Seiler, N., Boesch, C., Mundry, R., Stephens, C. & Robbins, M. M. Space partitioning in wild, non-territorial mountain gorillas: The impact of food and neighbours. R. Soc. Open Sci. 4(11), 170720 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. J. Mammal. 94, 109–119 (2013).

    Google Scholar 

  • Podgórski, T., Lusseau, D., Scandura, M., Sonnichsen, L. & Jedrzejewska, B. Long-lasting, kin-directed female interactions in a spatially structured wild boar social network. PLoS One 9, 1–11 (2014).

    Google Scholar 

  • Keiter, D. A. & Beasley, J. C. Hog heaven? Challenges of managing introduced wild pigs in natural areas. Nat. Areas J. 37, 6–16 (2017).

    ADS 

    Google Scholar 

  • Lewis, J. S. et al. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7, 44152 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singer, F. J., Otto, D. K., Tipton, A. R. & Hable, C. P. Home ranges, movements, and habitat use of European wild boar in Tennessee. J. Wildl. Manag. 45, 343–353 (1981).

    Google Scholar 

  • Saunders, G. & Kay, B. Movements of feral pigs at Sunny Corner, New South Wales. Wildl. Res. 18, 49–61 (1990).

    Google Scholar 

  • Boitani, L., Mattei, L., Nonis, D. & Corsi, F. Spatial and activity patterns of wild boars in Tuscany, Italy. J. Mammal. 75, 600–612 (1994).

    Google Scholar 

  • Dexter, N. The influence of pasture distribution, temperature and sex on home-range size of feral pigs in a semi-arid environment. Wildl. Res. 26, 755–762 (1999).

    Google Scholar 

  • Calenge, C., Maillard, D., Vassant, J. & Brandt, S. Summer and hunting season home ranges of wild boar (Sus scrofa) in two habitats in France. Game Wildl. Sci. 19, 281–301 (2002).

    Google Scholar 

  • Hayes, R., Riffell, S., Minnis, R. & Holder, B. Survival and habitat use of feral hogs in Mississippi. Southeast. Nat. 8, 411–427 (2009).

    Google Scholar 

  • Fattebert, J., Baubet, E., Slotow, R. & Fischer, C. Landscape effects on wild boar home range size under contrasting harvest regimes in a human-dominated agro-ecosystem. Eur. J. Wildl. Res. 63(2), 32 (2017).

    Google Scholar 

  • Clontz, L. M., Pepin, K. M., VerCauteren, K. C., & Beasley, J. C. Influence of biotic and abiotic factors on home range size and shape of invasive wild pigs (Sus scrofa). Pest Manag. Sci. 78(3), 914–928 (2021).

    PubMed 

    Google Scholar 

  • Mcloughlin, P. D., Ferguson, S. H. & Messier, F. Intraspecific variation in home range overlap with habitat quality: A comparison among brown bear populations. Evol. Ecol. 14, 39–60 (2000).

    Google Scholar 

  • Golabek, K. A., Ridley, A. R. & Radford, A. N. Food availability affects strength of seasonal territorial behaviour in a cooperatively breeding bird. Anim. Behav. 83, 613–619 (2012).

    Google Scholar 

  • Kilgo, J. C. et al. Food resources affect territoriality of invasive wild pig sounders with implications for control. Sci. Rep. 11(1), 1–11 (2021).

    Google Scholar 

  • Geist, V. A comparison of social adaptations in relations to ecology in gallinaceous bird and ungulate societies. Annu. Rev. Ecol. Syst. 8, 193–207 (1977).

    Google Scholar 

  • Ilse, L. M. & Hellgren, E. C. Resource partitioning in sympatric populations of collared peccaries and feral hogs in southern Texas. J. Mammal. 76, 784–799 (1995).

    Google Scholar 

  • Sparklin, B. D., Mitchell, M. S., Hanson, L. B., Jolley, D. B. & Ditchkoff, S. S. Territoriality of feral pigs in a highly persecuted population on Fort Benning, Georgia. J. Wildl. Manag. 73, 497–502 (2009).

    Google Scholar 

  • Barrett, R. The feral hog at Dye Creek ranch, California. Hilgardia 46, 283–355 (1978).

    Google Scholar 

  • Baber, D. W. & Coblentz, B. E. Density, home range, habitat use, and reproduction in feral pigs on Santa Catalina Island. J. Mammal. 67, 512–525 (1986).

    Google Scholar 

  • Kay, S. L. et al. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5, 14 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pepin, K. M. et al. Contact heterogeneities in feral swine: implications for disease management and future research. Ecosphere 7(3), e01230. https://doi.org/10.1002/ecs2.1230 (2016).

    Article 

    Google Scholar 

  • Singh, J. S. & Yadava, P. S. Seasonal variation in composition, plant biomass, and net primary productivity of a tropical grassland at Kurukshetra, India. Ecol. Monogr. 44(3), 351–376 (1974).

    Google Scholar 

  • Swemmer, A. M., Knapp, A. K. & Snyman, H. A. Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. J. Ecol. 95, 780–788 (2007).

    Google Scholar 

  • Harless, M. L., Walde, A. D., Delaney, D. K., Pater, L. L. & Hayes, W. K. Home range, spatial overlap, and burrow use of the desert tortoise in the West Mojave Desert. Copeia 2, 378–389 (2009).

    Google Scholar 

  • Lewis, J. S. et al. Contact networks reveal potential for interspecific interactions of sympatric wild felids driven by space use. Ecosphere 8(3), e01707 (2017).

    Google Scholar 

  • Weber, N. et al. Badger social networks correlate with tuberculosis infection. Curr. Biol. 23(20), R915–R916 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Vander Waal, K. L. et al. The “strength of weak ties” and helminth parasitism in giraffe social networks. Behav. Ecol. 27(4), 1190–1197 (2016).

    Google Scholar 

  • Podgórski, T., Apollonio, M. & Keuling, O. Contact rates in wild boar populations: Implications for disease transmission. J. Wildl. Manag. 82, 1210–1218 (2018).

    Google Scholar 

  • D’Andrea, L., Durio, P., Perrone, A. & Pirone, S. Preliminary data of the wild boar (Sus scrofa) space use in mountain environment. IBEX J. Mountain Ecol. 3, 117–121 (2014).

    Google Scholar 

  • Keuling, O., Stier, N. & Roth, M. Annual and seasonal space use of different age classes of female wild boar Sus scrofa L. Eur. J. Wildl. Res. 54, 403–412 (2008).

    Google Scholar 

  • Hixon, M. A. Food production and competitor density as the determinants of feeding territory size. Am. Nat. 115(4), 510–530 (1980).

    MathSciNet 

    Google Scholar 

  • Bastille-Rousseau, G. et al. Multi-level movement response of invasive wild pigs (Sus scrofa) to removal. Pest Manag. Sci. 77(1), 85–95 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Maher, C. R. & Lott, D. F. A review of ecological determinants of territoriality within vertebrate species. Am. Midl. Nat. 143(1), 1–30 (2000).

    Google Scholar 

  • Mendl, M., Randle, K. & Pope, S. Young female pigs can discriminate individual differences in odours from conspecific urine. Anim. Behav. 64, 97–101 (2002).

    Google Scholar 

  • Marsh, M. K., Hutchings, M. R., McLeod, S. R. & White, P. C. L. Spatial and temporal heterogeneities in the contact behaviour of rabbits. Behav. Ecol. Sociobiol. 65, 183–195 (2011).

    Google Scholar 

  • Yang, A. et al. Effects of social structure and management on risk of disease establishment in wild pigs. J. Anim. Ecol. 90(4), 820–833 (2021).

    PubMed 

    Google Scholar 

  • Lavelle, M. J. et al. Assessing risk of disease transmission: Direct implications for an indirect science. Bioscience 64, 524–530 (2014).

    Google Scholar 

  • Gortázar, C., Ferroglio, E., Hofle, U., Frolich, K. & Vicente, J. Diseases shared between wildlife and livestock: A European perspective. Eur. J. Wildl. Res. 53, 241–256 (2007).

    Google Scholar 

  • Miller, R. S. et al. Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: Implications for disease risk management in North America. Sci. Rep. 7, 7821 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abrahamson, W. G., Johnson, A. F., Layne, J. N. & Peroni, P. A. Vegetation of the Archbold Biological Station, Florida: An example of the southern Lake Wales ridge. Florida Sci. 47, 209–250 (1984).

    Google Scholar 

  • Boughton, E. H. & Boughton, R. K. Modification by an invasive ecosystem engineer shifts a wet prairie to a monotypic stand. Biol. Invasions 16(10), 2105–2114 (2014).

    Google Scholar 

  • Ko, J., Williams, B., Smith, V., McGrath, C. & Jacobson, J. Comparison of Telazol, Telazol–ketamine, Telazol–xylazine, and Telazol–ketamine–xylazine as chemical restraint and anesthetic induction combination in swine. Lab Anim. Sci. 43(5), 476–480 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Gabor, T. M., Hellgren, E. C. & Silvy, N. J. Immobilization of collared peccaries (Tayassu tajacu) and feral hogs (Sus scrofa) with Telazol® and xylazine. J. Wildl. Dis. 33(1), 161–164 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Sweitzer, R. A. et al. Immobilization and physiological parameters associated with chemical restraint of wild pigs with Telazol® and xylazine hydrochloride. J. Wildl. Dis. 33(2), 198–205 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movements using Brownian bridges. Ecology 88, 2354–2363 (2007).

    PubMed 

    Google Scholar 

  • Tracey, J. A. mkde. R Core Development Team. (2014). https://cran.r-project.org/web/packages/mkde/index.Html. Accessed 27 Mar 2021

  • R Development Core Team. R: a language and environment for statistical computing, version 3.5.1. R Foundation for Statistical Computing, Vienna, Austria. (2018). https://www.r-project.org/. Accessed 27 Mar 2021

  • Sawyer, H. & Kauffman, M. J. Stopover ecology of a migratory ungulate. J. Anim. Ecol. 80, 1078–1087 (2011).

    PubMed 

    Google Scholar 

  • Vander Wal, E., Laforge, M. P. & McLoughlin, P. D. Density dependence in social behaviour: Home range overlap and density interacts to affect conspecific encounter rates in a gregarious ungulate. Behav. Ecol. Sociobiol. 68(3), 383–390 (2014).

    Google Scholar 

  • Schauber, E. M., Nielsen, C. K., Kjær, L. J., Anderson, C. W. & Storm, D. J. Social affiliation and contact patterns among white-tailed deer in disparate landscapes: Implications for disease transmission. J. Mammal. 96(1), 16–28 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Robert, K., Garant, D. & Pelletier, F. Keep in touch: Does spatial overlap correlate with contact rate frequency?. J. Wildl. Manag. 76(8), 1670–1675 (2012).

    Google Scholar 

  • Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).

    Google Scholar 

  • Newman, M. E. The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Wey, T., Blumstein, D. T., Shen, W. & Jordan, F. Social network analysis of animal behaviour: A promising tool for the study of sociality. Anim. Behav. 75, 333–344 (2008).

    Google Scholar 

  • Bates, D., Maechler, M., Bolker, B., & Walker, S. lme4: linear mixed effects models using Eigen and S4. R package version 1.1-9. (2014) https://cran.rproject.org/package/lme4. (accessed 30 Jan 2019).

  • Burnham, K. P. & Anderson, D. R. A Practical Information-Theoretic Approach. Model Selection and Multi-model Inference 2nd edn. (Springer, 2002).

    MATH 

    Google Scholar 

  • Akaike, H. Information theory and an extension of the maximum likelihood principle. In Second international symposium on information theory. (eds. Petrov, B. N. & Csaki, F.) 267–281 (Academiai Kiado, 1973).


  • Source: Ecology - nature.com

    Searching for genetic evidence of demographic decline in an arctic seabird: beware of overlapping generations

    New maps show airplane contrails over the U.S. dropped steeply in 2020