Byrne, M. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr. Mar. Biol. Annu. Rev. 49, 1–42 (2011).
Byrne, M. & Przeslawski, R. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr. Comp. Biol. 53, 582–596 (2013).
Google Scholar
Fitzer, S. C. et al. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection? Ecol. Evol. 5, 4875–4884 (2015).
Google Scholar
Hofmann, G. E. et al. The effect of ocean acidification on calcifying organisms in marine ecosystems: an Organism-to-Ecosystem perspective. Annu. Rev. Ecol. Evol. Syst. 41, 127–147 (2010).
Google Scholar
Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 19, 1884–1896 (2013).
Google Scholar
Kroeker, K. J. et al. Interacting environmental mosaics drive geographic variation in mussel performance and predation vulnerability. Ecol. Lett. 19, 771–779 (2016).
Google Scholar
Parker, L. M. et al. Predicting the response of molluscs to the impact of ocean acidification. Biology 2, 651–692 (2013).
Google Scholar
Przeslawski, R., Byrne, M. & Mellin, C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob. Chang. Biol. 21, 2122–2140 (2015).
Google Scholar
Suckling, C. C. et al. Adult acclimation to combined temperature and pH stressors significantly enhances reproductive outcomes compared to short-term exposures. J. Anim. Ecol. 84, 773–784 (2015).
Google Scholar
Thomsen, J., Haynert, K., Wegner, K. M. & Melzner, F. Impact of seawater carbonate chemistry on the calcification of marine bivalves. Biogeosciences 12, 4209–4220 (2015).
Google Scholar
Waldbusser, G. G. et al. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Chang. 5, 273–280 (2014).
Google Scholar
Waldbusser, G. G. et al. Ocean acidification has multiple modes of action on bivalve larvae. PLoS ONE 10, e0128376 (2015).
Google Scholar
Barclay, K. M. et al. Variation in the effects of ocean acidification on shell growth and strength in two intertidal gastropods. Mar. Ecol. Prog. Ser. 626, 109–121 (2019).
Google Scholar
Byrne, M. & Fitzer, S. The impact of environmental acidification on the microstructure and mechanical integrity of marine invertebrate skeletons. Conserv. Physiol. 7, coz062 (2019).
Google Scholar
Cross, E. L., Peck, L. S. & Harper, E. M. Ocean acidification does not impact shell growth or repair of the Antarctic brachiopod Liothyrella uva (Broderip, 1833). J. Exp. Mar. Biol. Ecol. 462, 29–35 (2015).
Google Scholar
Cross, E. L., Peck, L. S., Lamare, M. D. & Harper, E. M. No ocean acidification effects on shell growth and repair in the New Zealand brachiopod Calloria inconspicua (Sowerby, 1846). ICES J. Mar. Sci. 73, 920–926 (2015).
Google Scholar
Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).
Google Scholar
Watson, S.-A. et al. Marine invertebrate skeleton size varies with latitude, temperature and carbonate saturation: implications for global change and ocean acidification. Glob. Chang. Biol. 18, 3026–3038 (2012).
Google Scholar
Fitzer, S. C., Cusack, M., Phoenix, V. R. & Kamenos, N. A. Ocean acidification reduces the crystallographic control in juvenile mussel shells. J. Struct. Biol. 188, 39–45 (2014).
Google Scholar
Gaylord, B. et al. Functional impacts of ocean acidification in an ecologically critical foundation species. J. Exp. Biol. 214, 2586–2594 (2011).
Google Scholar
Gazeau, F. et al. Impacts of ocean acidification on marine shelled molluscs. Mar. Biol. 160, 2207–2245 (2013).
Google Scholar
Bullard, E. M., Torres, I., Ren, T., Graeve, O. A. & Roy, K. Shell mineralogy of a foundational marine species, Mytilus californianus, over half a century in a changing ocean. Proc. Natl. Acad. Sci. USA 118, e2004769118 (2021).
Google Scholar
Cross, E. L., Harper, E. M. & Peck, L. S. Thicker shells compensate extensive dissolution in brachiopods under future ocean acidification. Environ. Sci. Technol. 53, 5016–5026 (2019).
Google Scholar
Harper, E. M. Are calcitic layers an effective adaptation against shell dissolution in the Bivalvia? J. Zool. 251, 179–186 (2000).
Google Scholar
Ashton, G. V., Morley, S. A., Barnes, D. K. A., Clark, M. S. & Peck, L. S. Warming by 1 °C drives species and assemblage level responses in Antarctica’s marine shallows. Curr. Biol. 27, 2698–2705.e3 (2017).
Google Scholar
Cornwall, C. E. et al. A coralline alga gains tolerance to ocean acidification over multiple generations of exposure. Nat. Clim. Chang. 10, 143–146 (2020).
Google Scholar
Donelson, J. M., Salinas, S., Munday, P. L. & Shama, L. N. S. Transgenerational plasticity and climate change experiments: where do we go from here? Glob. Chang. Biol. 24, 13–34 (2018).
Google Scholar
Gibbin, E. M., Massamba N’Siala, G., Chakravarti, L. J., Jarrold, M. D. & Calosi, P. The evolution of phenotypic plasticity under global change. Sci. Rep. 7, 17253 (2017).
Google Scholar
Peck, L. S. Organisms and responses to environmental change. Mar. Genom. 4, 237–243 (2011).
Google Scholar
Somero, G. N. The physiology of global change: linking patterns to mechanisms. Annu. Rev. Mar. Sci. 4, 39–61 (2012).
Google Scholar
Telesca, L., Peck, L. S., Backeljau, T., Heinig, M. F. & Harper, E. M. A century of coping with environmental and ecological changes via compensatory biomineralization in mussels. Glob. Chang. Biol. 27, 624–639 (2021).
Google Scholar
Kroeker, K. J. et al. Ecological change in dynamic environments: accounting for temporal environmental variability in studies of ocean change biology. Glob. Chang. Biol. 26, 54–67 (2020).
Google Scholar
Bernhardt, J. R., Sunday, J. M., Thompson, P. L. & O’Connor, M. I. Nonlinear averaging of thermal experience predicts population growth rates in a thermally variable environment. Proc. Biol. Sci. 285, 20181076 (2018).
Harley, C. D. G. et al. Conceptualizing ecosystem tipping points within a physiological framework. Ecol. Evol. 7, 6035–6045 (2017).
Google Scholar
Griffiths, J. S., Pan, T.-C. F. & Kelly, M. W. Differential responses to ocean acidification between populations of Balanophyllia elegans corals from high and low upwelling environments. Mol. Ecol. 28, 2715–2730 (2019).
Google Scholar
Telesca, L. et al. Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change. Glob. Chang. Biol. 25, 4179–4193 (2019).
Google Scholar
Barnes, D. K. A., Ashton, G. V., Morley, S. A. & Peck, L. S. 1 °C warming increases spatial competition frequency and complexity in antarctic marine macrofauna. Commun. Biol. 4, 208 (2021).
Google Scholar
Cross, E. L., Harper, E. M. & Peck, L. S. A 120-year record of resilience to environmental change in brachiopods. Glob. Chang. Biol. 24, 2262–2271 (2018).
Google Scholar
Kidwell, S. M. Biology in the anthropocene: challenges and insights from young fossil records. Proc. Natl Acad. Sci. USA 112, 4922–4929 (2015).
Google Scholar
Pfister, C. A. et al. Historical baselines and the future of shell calcification for a foundation species in a changing ocean. Proc. Biol. Sci. 283, 20160392 (2016).
Angilletta, M. J., Jr Zelic, M. H., Adrian, G. J., Hurliman, A. M. & Smith, C. D. Heat tolerance during embryonic development has not diverged among populations of a widespread species (Sceloporus undulatus). Conserv. Physiol. 1, cot018 (2013).
Google Scholar
Hofmann, G. E. & Somero, G. Evidence for protein damage at environmental temperatures: Seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus. J. Exp. Biol. 198, 1509–1518 (1995).
Google Scholar
Roberts, D. A., Hofmann, G. E. & Somero, G. N. Heat-Shock protein expression in Mytilus californianus: Acclimatization (seasonal and Tidal-Height comparisons) and acclimation effects. Biol. Bull. 192, 309–320 (1997).
Google Scholar
Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).
Google Scholar
Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).
Google Scholar
Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. USA 108, 17905–17909 (2011).
Google Scholar
Rummukainen, M. Changes in climate and weather extremes in the 21st century. Wiley Interdiscip. Rev. Clim. Change 3, 115–129 (2012).
Google Scholar
Nehls, G. & Thiel, M. Large-scale distribution patterns of the mussel Mytilus edulis in the Wadden Sea of Schleswig-Holstein: do storms structure the ecosystem? Neth. J. Sea Res. 31, 181–187 (1993).
Google Scholar
Sorte, C. J. B. et al. Thermal tolerance limits as indicators of current and future intertidal zonation patterns in a diverse mussel guild. Mar. Biol. 166, https://doi.org/10.1007/s00227-018-3452-6 (2019).
Gao, Y. et al. Evolution of trace metal and organic pollutant concentrations in the Scheldt River Basin and the Belgian Coastal Zone over the last three decades. J. Mar. Syst. 128, 52–61 (2013).
Google Scholar
Camphuysen, K. & Vollaard, B. Oil pollution in the Dutch sector of the North Sea. In Oil Pollution in the North Sea (ed., Carpenter, A.) 117–140 (Springer International Publishing, 2016).
Brion, N., Jans, S., Chou, L. & Rousseau, V. Nutrient loads to the Belgian coastal zone. In Current Status of Eutrophication in the Belgian Coastal Zone (eds Rousseau, V., Lancelot, C. & Cox, D.) 17–43 (Presses Universitaires de Bruxelles, Brussels, 2008).
Gypens, N., Borges, A. V. & Lancelot, C. Effect of eutrophication on air-sea CO2 fluxes in the coastal Southern North Sea: a model study of the past 50 years. Glob. Chang. Biol. 15, 1040–1056 (2009).
Google Scholar
Mackenzie, F. T., Ver, L. M. & Lerman, A. Century-scale nitrogen and phosphorus controls of the carbon cycle. Chem. Geol. 190, 13–32 (2002).
Google Scholar
Burrows, M. T. & Hughes, R. N. Natural foraging of the dogwhelk, Nucella lapillus (Linnaeus); the weather and whether to feed. J. Moll. Stud. 55, 285–295 (1989).
Google Scholar
Hughes, R. N. & Burrows, M. T. An interdisciplinary approach to the study of foraging behaviour in the predatory gastropod, Nucella lapillus (L.). Ethol. Ecol. Evol. 6, 75–85 (1994).
Google Scholar
Trussell, G. C., Ewanchuk, P. J. & Bertness, M. D. Trait-mediated effects in rocky intertidal food chains: predator risk cues alter prey feeding rates. Ecology 84, 629–640 (2003).
Google Scholar
Palmer, A. R. Effect of crab effluent and scent of damaged conspecifics on feeding, growth, and shell morphology of the Atlantic dogwhelk Nucella lapillus (L.). Hydrobiologia 193, 155–182 (1990).
Google Scholar
Pascoal, S., Carvalho, G., Creer, S., Mendo, S. & Hughes, R. N. Plastic and heritable variation in shell thickness of the intertidal gastropod Nucella lapillus associated with risks of crab predation and wave action, and sexual maturation. PLoS ONE 7, e52134 (2012).
Google Scholar
Avery, R. & Etter, R. J. Microstructural differences in the reinforcement of a gastropod shell against predation. Mar. Ecol. Prog. Ser. 323, 159–170 (2006).
Google Scholar
Mayk, D. Transitional spherulitic layer in the muricid Nucella lapillus. J. Molluscan Stud. 87, https://doi.org/10.1093/mollus/eyaa035 (2020).
Berry, R. J. & Crothers, J. H. Visible variation in the dog whelk, Nucella lapillus. J. Zool. 174, 123–148 (1974).
Google Scholar
Crothers, J. H. Two different patterns of shell-shape variation in the dog-whelk Nucella lapillus (L.). Biol. J. Linn. Soc. Lond. 25, 339–353 (1985).
Google Scholar
Galante-Oliveira, S., Marçal, R., Pacheco, M. & Barroso, C. M. Nucella lapillus ecotypes at the southern distributional limit in Europe: Variation in shell morphology is not correlated with chromosome counts on the Portuguese Atlantic coast. J. Mollusc. Stud. 78, 147–150 (2011).
Google Scholar
Appleton, R. D. & Palmer, A. R. Water-borne stimuli released by predatory crabs and damaged prey induce more predator-resistant shells in a marine gastropod. Proc. Natl Acad. Sci. USA 85, 4387–4391 (1988).
Google Scholar
Cowell, E. B. & Crothers, J. H. On the occurrence of multiple rows of ‘teeth’ in the shell of the dog-whelk Nucella lapillus. J. Mar. Biol. Assoc. UK 50, 1101–1111 (1970).
Google Scholar
Currey, J. D. & Hughes, R. N. Strength of the dogwhelk Nucella lapillus and the winkle Littorina littorea from different habitats. J. Anim. Ecol. 51, 47–56 (1982).
Google Scholar
Hughes, R. N. & Elner, R. W. Tactics of a predator, Carcinus maenas, and morphological responses of the prey, Nucella lapillus. J. Anim. Ecol. 48, 65–78 (1979).
Google Scholar
Vermeij, G. J. & Currey, J. D. Geographical variation in the shell strength of thaidid snail shells. Biol. Bull. 158, 383–389 (1980).
Google Scholar
Benedetti-Cecchi, L. & Trussell, G. C. Rocky intertidal communities. In Marine Community Ecology and Conservation 203–225 (Sinauer Associates, Sunderland, MA, 2014).
Telesca, L. et al. Blue mussel shell shape plasticity and natural environments: a quantitative approach. Sci. Rep. 8, 2865 (2018).
Google Scholar
Cooke, A. H. & Reed, F. R. C. The Cambridge Natural History (Macmillan Company, 1895).
Kitching, J. A. & Ebling, F. J. In Ecological Studies at Lough Ine Vol. 4 197–291 (ed. Cragg, J. B.) (Academic Press, 1967).
Crothers, J. H. Dog-whelks: an introduction to the biology of Nucella lapillus (L.). Field Stud. 6, 291–360 (1985).
Chadwick, M., Harper, E. M., Lemasson, A., Spicer, J. I. & Peck, L. S. Quantifying susceptibility of marine invertebrate biocomposites to dissolution in reduced pH. R. Soc. Open Sci. 6, 190252 (2019).
Google Scholar
Laing, I. Effect of temperature and ration on growth and condition of king scallop (Pecten maximus) spat. Aquaculture 183, 325–334 (2000).
Thouzeau, G. et al. Growth of Argopecten purpuratus (Mollusca: Bivalvia) on a natural bank in Northern Chile: sclerochronological record and environmental controls. Aquat. Living Resour. 21, 45–55 (2008).
Google Scholar
Kleinman, S., Hatcher, B. G., Scheibling, R. E., Taylor, L. H. & Hennigar, A. W. Shell and tissue growth of juvenile sea scallops (Placopecten magellanicus) in suspended and bottom culture in Lunenburg Bay, Nova Scotia. Aquaculture 142, 75–97 (1996).
Google Scholar
Doroudi, M. S., Southgate, P. C. & Mayer, R. J. The combined effects of temperature and salinity on embryos and larvae of the black lip pearl oyster, Pinctada margaritifera (L.). Aquacult. Res. 30, 271–277 (1999).
Google Scholar
Tomaru, Y., Kumatabara, Y., Kawabata, Z. & Nakano, S. Effect of water temperature and chlorophyll abundance on shell growth of the Japanese pearl oyster, Pinctada fucata martensii, in suspended culture at different depths and sites. Aquacult. Res. 33, 109–116 (2002).
Google Scholar
Schöne, B., Tanabe, K., Dettman, D. & Sato, S. Environmental controls on shell growth rates and δ18O of the shallow-marine bivalve mollusk Phacosoma japonicum in Japan. Mar. Biol. 142, 473–485 (2003).
Google Scholar
Ballesta-Artero, I., Witbaard, R., Carroll, M. L. & Meer, J van der Environmental factors regulating gaping activity of the bivalve Arctica islandica in northern Norway. Mar. Biol. 164, 116 (2017).
Google Scholar
Witbaard, R. Growth variations in Arctica islandica L. (Mollusca): a reflection of hydrography-related food supply. ICES J. Mar. Sci. 53, 981–987 (1996).
Google Scholar
Joubert, C. et al. Temperature and food influence shell growth and mantle gene expression of shell matrix proteins in the pearl oyster Pinctada margaritifera. PLoS ONE 9, e103944 (2014).
Google Scholar
Fay, A. R. & McKinley, G. A. Global trends in surface ocean pCO2 from in situ data. Global Biogeochem. Cycles 27, 541–557 (2013).
Google Scholar
Ostle, C. et al. Carbon Dioxide and Ocean Acidification Observations in UK Waters. Synthesis report with a focus on 2010–2015. 44 https://doi.org/10.13140/RG.2.1.4819.4164 (2016).
Borges, A. V. & Gypens, N. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than ocean acidification. Limnol. Oceanogr. 55, 346–353 (2010).
Google Scholar
Clarke, A. & Beaumont, J. C. An extreme marine environment: a 14-month record of temperature in a polar tidepool. Polar Biol. 43, 2021–2030 (2020).
Google Scholar
Fisher, J. A. D., Rhile, E. C., Liu, H. & Petraitis, P. S. An intertidal snail shows a dramatic size increase over the past century. Proc. Natl Acad. Sci. USA 106, 5209–5212 (2009).
Google Scholar
Clarke, A. Seasonal acclimatization and latitudinal compensation in metabolism: Do they exist? Funct. Ecol. 7, 139–149 (1993).
Google Scholar
Sanders, T., Thomsen, J., Müller, J. D., Rehder, G. & Melzner, F. Decoupling salinity and carbonate chemistry: low calcium ion concentration rather than salinity limits calcification in Baltic Sea mussels. Biogeosciences 18, 2573–2590 (2021).
Google Scholar
Palmer, A. R. Relative cost of producing skeletal organic matrix versus calcification: evidence from marine gastropods. Mar. Biol. 75, 287–292 (1983).
Google Scholar
Palmer, A. R. Calcification in marine molluscs: how costly is it? Proc. Natl. Acad. Sci. USA 89, 1379–1382 (1992).
Watson, S.-A., Morley, S. A. & Peck, L. S. Latitudinal trends in shell production cost from the tropics to the poles. Sci. Adv. 3, e1701362 (2017).
Google Scholar
Burton, E. A. & Walter, L. M. Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control? Geology 15, 111–114 (1987).
Google Scholar
Sanders, T., Schmittmann, L., Nascimento-Schulze, J. C. & Melzner, F. High calcification costs limit mussel growth at low salinity. Front. Mar. Sci. 5, 352 (2018).
Google Scholar
Etter, R. J. Assymmetrical development plasticity in an intertidal snail. Evolution 42, 322–334 (1988).
Google Scholar
Largen, M. J. The influence of water temperature upon the life of the dog-whelk Thais lapillus (Gastropoda: Prosobranchia). J. Anim. Ecol. 36, 207–214 (1967).
Google Scholar
Stickle, W. B., Moore, M. N. & Bayne, B. L. Effects of temperature, salinity and aerial exposure on predation and lysosomal stability of the dogwhelk Thais (Nucella) lapillus (L.). J. Exp. Mar. Biol. Ecol. 93, 235–258 (1985).
Google Scholar
Queirós, A. M. et al. Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem. Glob. Chang. Biol. 21, 130–143 (2015).
Google Scholar
Hughes, R. N. Annual production of two Nova Scotian populations of Nucella lapillus (L.). Oecologia 8, 356–370 (1972).
Google Scholar
Gattuso, J.-P., Frankignoulle, M., Bourge, I., Romaine, S. & Buddemeier, R. W. Effect of calcium carbonate saturation of seawater on coral calcification. Glob. Planet. Change 18, 37–46 (1998).
Google Scholar
Schneider, K. & Erez, J. The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol. Oceanogr. 51, 1284–1293 (2006).
Google Scholar
Kremling, K. & Wilhelm, G. Recent increase of the calcium concentrations in baltic sea waters. Mar. Pollut. Bull. 34, 763–767 (1997).
Google Scholar
Riebesell, U., Fabry, V. J., Hansson, L. & Gattuso, J.-P. Guide to Best Practices for Ocean Acidification Research and Data Reporting (Office for Official Publications of the European Communities, 2011).
Desmit, X. et al. Changes in chlorophyll concentration and phenology in the North Sea in relation to de eutrophication and sea surface warming. Limnol. Oceanogr. 65, 828–847 (2020).
Google Scholar
Petraitis, P. S. & Dudgeon, S. R. Declines over the last two decades of five intertidal invertebrate species in the western North Atlantic. Commun. Biol. 3, 591 (2020).
Google Scholar
Mayk, D., Peck, L. S. & Harper, E. M. Evidence for carbonate system mediated shape shift in an intertidal predatory gastropod. Front. Mar. Sci. 9, 894182 (2022).
Google Scholar
Page, H. M. & Hubbard, D. M. Temporal and spatial patterns of growth in mussels Mytilus edulis on an offshore platform: relationships to water temperature and food availability. J. Exp. Mar. Biol. Ecol. 111, 159–179 (1987).
Google Scholar
Thomsen, J., Casties, I., Pansch, C., Körtzinger, A. & Melzner, F. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Glob. Chang. Biol. 19, 1017–1027 (2013).
Google Scholar
Wołowicz, M., Sokołowski, A., Bawazir, A. S. & Lasota, R. Effect of eutrophication on the distribution and ecophysiology of the mussel Mytilus trossulus (Bivalvia) in southern Baltic Sea (the Gulf of Gdańsk). Limnol. Oceanogr. 51, 580–590 (2006).
Google Scholar
Moran, P. J. & Grant, T. R. The effects of industrial pollution on the development and succession of marine fouling communities I. Analysis of species richness and frequency data. Mar. Ecol. 10, 231–246 (1989).
Google Scholar
Moran, P. J. & Grant, T. R. Transference of marine fouling communities between polluted and unpolluted sites: impact on structure. Environ. Pollut. 72, 89–102 (1991).
Google Scholar
Rastetter, E. B. & Cooke, W. J. Responses of marine fouling communities to sewage abatement in Kaneohe Bay, Oahu, Hawaii. Mar. Biol. 53, 271–280 (1979).
Google Scholar
Boschma, H. Elminius modestus in the Netherlands. Nature 161, 403–404 (1948).
Google Scholar
Wolff, W. J. Non-indigenous marine and estuarine species in the Netherlands. Zool. Meded. 79-1, 1–116 (2005).
Kerckhof, F. Barnacles (Cirripedia, Balanomorpha) in Belgian waters, an overview of the species and recent evolutions, with emphasis on exotic species. Bull. Inst. R. Sci. Nat. Belg. Biol./Bull. K. Belg. Inst. Natuurwet. Biol. 72, 93–104 (2002).
Gibbs, P. E., Bryan, G. W. & Pascoe, P. L. TBT-induced imposex in the dogwhelk, Nucella lapillus: geographical uniformity of the response and effects. Mar. Environ. Res. 32, 79–87 (1991).
Google Scholar
Gibbs, P. E. Biological Effects of Contaminants: Use of Imposex in the Dogwhelk (Nucella lapillus) as a Bioindicator of Tributyltin Pollution. 37 https://doi.org/10.25607/OBP-272 (1999).
Oehlmann, J. et al. Imposex in Nucella lapillus and intersex in Littorina littorea: Interspecific comparison of two TBT-induced effects and their geographical uniformity. In Aspects of Littorinid Biology (eds O’Riordan, R. M., Burnell, G. M., Davies, M. S. & Ramsay, N. F.) 199–213 (Springer Netherlands, 1998).
Kerckhof, F. Over het verdwijnen van de purperslak Nucella lapillus (Linnaeus, 1758), langs onze kust. De Strandvlo 8, 82–85 (1988).
De Blauwe, H. & D’Udekem d’Acoz, C. Voortplantende populatie van de purperslak (Nucella lapillus) in België na meer dan 30 jaar afwezigheid (Mollusca, Gastropoda, Muricidae). De Strandvlo 32, 127–131 (2012).
Galante-Oliveira, S. et al. Factors affecting RPSI in imposex monitoring studies using Nucella lapillus (L.) as bioindicator. J. Environ. Monit. 12, 1055–1063 (2010).
Google Scholar
National Centers for Environmental Information/NESDIS/NOAA/U.S. Department of Commerce et al. International Comprehensive Ocean–Atmosphere Data Set (ICOADS) Release 3, Monthly Summaries https://doi.org/10.5065/D6V40SFD (2016).
ICES. Dataset on Ocean Hydrography (ICES, 2020).
Giardina, C. R. & Kuhl, F. P. Accuracy of curve approximation by harmonically related vectors with elliptical loci. Comput. Graph. Image Process. 6, 277–285 (1977).
Google Scholar
Kuhl, F. P. & Giardina, C. R. Elliptic fourier features of a closed contour. Comput. Graph. Image Process. 18, 236–258 (1982).
Google Scholar
Bonhomme, V., Picq, S., Gaucherel, C. & Claude, J. Momocs: outline analysis using R. J. Stat. Softw. 56, 1–24 (2014).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2020).
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).
Google Scholar
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
Google Scholar
Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).
Google Scholar
Bartoń, K. MuMIn: Multi-Model Inference https://cran.r-project.org/web/packages/MuMIn/index.html (2020).
Akaike, H. Information theory and an extension of the maximum likelihood principle. Springer Ser. Stat. 610–624 https://doi.org/10.1007/978-1-4612-0919-5/_38 (1992).
Source: Ecology - nature.com