in

Shell thickness of Nucella lapillus in the North Sea increased over the last 130 years despite ocean acidification

  • Byrne, M. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr. Mar. Biol. Annu. Rev. 49, 1–42 (2011).

    Google Scholar 

  • Byrne, M. & Przeslawski, R. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr. Comp. Biol. 53, 582–596 (2013).

    CAS 
    Article 

    Google Scholar 

  • Fitzer, S. C. et al. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection? Ecol. Evol. 5, 4875–4884 (2015).

    Article 

    Google Scholar 

  • Hofmann, G. E. et al. The effect of ocean acidification on calcifying organisms in marine ecosystems: an Organism-to-Ecosystem perspective. Annu. Rev. Ecol. Evol. Syst. 41, 127–147 (2010).

    Article 

    Google Scholar 

  • Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 19, 1884–1896 (2013).

    Article 

    Google Scholar 

  • Kroeker, K. J. et al. Interacting environmental mosaics drive geographic variation in mussel performance and predation vulnerability. Ecol. Lett. 19, 771–779 (2016).

    Article 

    Google Scholar 

  • Parker, L. M. et al. Predicting the response of molluscs to the impact of ocean acidification. Biology 2, 651–692 (2013).

    CAS 
    Article 

    Google Scholar 

  • Przeslawski, R., Byrne, M. & Mellin, C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob. Chang. Biol. 21, 2122–2140 (2015).

    Article 

    Google Scholar 

  • Suckling, C. C. et al. Adult acclimation to combined temperature and pH stressors significantly enhances reproductive outcomes compared to short-term exposures. J. Anim. Ecol. 84, 773–784 (2015).

    Article 

    Google Scholar 

  • Thomsen, J., Haynert, K., Wegner, K. M. & Melzner, F. Impact of seawater carbonate chemistry on the calcification of marine bivalves. Biogeosciences 12, 4209–4220 (2015).

    Article 

    Google Scholar 

  • Waldbusser, G. G. et al. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Chang. 5, 273–280 (2014).

    Article 
    CAS 

    Google Scholar 

  • Waldbusser, G. G. et al. Ocean acidification has multiple modes of action on bivalve larvae. PLoS ONE 10, e0128376 (2015).

    Article 
    CAS 

    Google Scholar 

  • Barclay, K. M. et al. Variation in the effects of ocean acidification on shell growth and strength in two intertidal gastropods. Mar. Ecol. Prog. Ser. 626, 109–121 (2019).

    CAS 
    Article 

    Google Scholar 

  • Byrne, M. & Fitzer, S. The impact of environmental acidification on the microstructure and mechanical integrity of marine invertebrate skeletons. Conserv. Physiol. 7, coz062 (2019).

    CAS 
    Article 

    Google Scholar 

  • Cross, E. L., Peck, L. S. & Harper, E. M. Ocean acidification does not impact shell growth or repair of the Antarctic brachiopod Liothyrella uva (Broderip, 1833). J. Exp. Mar. Biol. Ecol. 462, 29–35 (2015).

    CAS 
    Article 

    Google Scholar 

  • Cross, E. L., Peck, L. S., Lamare, M. D. & Harper, E. M. No ocean acidification effects on shell growth and repair in the New Zealand brachiopod Calloria inconspicua (Sowerby, 1846). ICES J. Mar. Sci. 73, 920–926 (2015).

    Article 

    Google Scholar 

  • Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).

    Article 

    Google Scholar 

  • Watson, S.-A. et al. Marine invertebrate skeleton size varies with latitude, temperature and carbonate saturation: implications for global change and ocean acidification. Glob. Chang. Biol. 18, 3026–3038 (2012).

    Article 

    Google Scholar 

  • Fitzer, S. C., Cusack, M., Phoenix, V. R. & Kamenos, N. A. Ocean acidification reduces the crystallographic control in juvenile mussel shells. J. Struct. Biol. 188, 39–45 (2014).

    CAS 
    Article 

    Google Scholar 

  • Gaylord, B. et al. Functional impacts of ocean acidification in an ecologically critical foundation species. J. Exp. Biol. 214, 2586–2594 (2011).

    CAS 
    Article 

    Google Scholar 

  • Gazeau, F. et al. Impacts of ocean acidification on marine shelled molluscs. Mar. Biol. 160, 2207–2245 (2013).

    CAS 
    Article 

    Google Scholar 

  • Bullard, E. M., Torres, I., Ren, T., Graeve, O. A. & Roy, K. Shell mineralogy of a foundational marine species, Mytilus californianus, over half a century in a changing ocean. Proc. Natl. Acad. Sci. USA 118, e2004769118 (2021).

    CAS 
    Article 

    Google Scholar 

  • Cross, E. L., Harper, E. M. & Peck, L. S. Thicker shells compensate extensive dissolution in brachiopods under future ocean acidification. Environ. Sci. Technol. 53, 5016–5026 (2019).

    CAS 
    Article 

    Google Scholar 

  • Harper, E. M. Are calcitic layers an effective adaptation against shell dissolution in the Bivalvia? J. Zool. 251, 179–186 (2000).

    Article 

    Google Scholar 

  • Ashton, G. V., Morley, S. A., Barnes, D. K. A., Clark, M. S. & Peck, L. S. Warming by 1 °C drives species and assemblage level responses in Antarctica’s marine shallows. Curr. Biol. 27, 2698–2705.e3 (2017).

    Article 
    CAS 

    Google Scholar 

  • Cornwall, C. E. et al. A coralline alga gains tolerance to ocean acidification over multiple generations of exposure. Nat. Clim. Chang. 10, 143–146 (2020).

    CAS 
    Article 

    Google Scholar 

  • Donelson, J. M., Salinas, S., Munday, P. L. & Shama, L. N. S. Transgenerational plasticity and climate change experiments: where do we go from here? Glob. Chang. Biol. 24, 13–34 (2018).

    Article 

    Google Scholar 

  • Gibbin, E. M., Massamba N’Siala, G., Chakravarti, L. J., Jarrold, M. D. & Calosi, P. The evolution of phenotypic plasticity under global change. Sci. Rep. 7, 17253 (2017).

    Article 
    CAS 

    Google Scholar 

  • Peck, L. S. Organisms and responses to environmental change. Mar. Genom. 4, 237–243 (2011).

    Article 

    Google Scholar 

  • Somero, G. N. The physiology of global change: linking patterns to mechanisms. Annu. Rev. Mar. Sci. 4, 39–61 (2012).

    Article 

    Google Scholar 

  • Telesca, L., Peck, L. S., Backeljau, T., Heinig, M. F. & Harper, E. M. A century of coping with environmental and ecological changes via compensatory biomineralization in mussels. Glob. Chang. Biol. 27, 624–639 (2021).

    Article 

    Google Scholar 

  • Kroeker, K. J. et al. Ecological change in dynamic environments: accounting for temporal environmental variability in studies of ocean change biology. Glob. Chang. Biol. 26, 54–67 (2020).

    Article 

    Google Scholar 

  • Bernhardt, J. R., Sunday, J. M., Thompson, P. L. & O’Connor, M. I. Nonlinear averaging of thermal experience predicts population growth rates in a thermally variable environment. Proc. Biol. Sci. 285, 20181076 (2018).

    Google Scholar 

  • Harley, C. D. G. et al. Conceptualizing ecosystem tipping points within a physiological framework. Ecol. Evol. 7, 6035–6045 (2017).

    Article 

    Google Scholar 

  • Griffiths, J. S., Pan, T.-C. F. & Kelly, M. W. Differential responses to ocean acidification between populations of Balanophyllia elegans corals from high and low upwelling environments. Mol. Ecol. 28, 2715–2730 (2019).

    CAS 

    Google Scholar 

  • Telesca, L. et al. Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change. Glob. Chang. Biol. 25, 4179–4193 (2019).

    Article 

    Google Scholar 

  • Barnes, D. K. A., Ashton, G. V., Morley, S. A. & Peck, L. S. 1 °C warming increases spatial competition frequency and complexity in antarctic marine macrofauna. Commun. Biol. 4, 208 (2021).

    Article 

    Google Scholar 

  • Cross, E. L., Harper, E. M. & Peck, L. S. A 120-year record of resilience to environmental change in brachiopods. Glob. Chang. Biol. 24, 2262–2271 (2018).

    Article 

    Google Scholar 

  • Kidwell, S. M. Biology in the anthropocene: challenges and insights from young fossil records. Proc. Natl Acad. Sci. USA 112, 4922–4929 (2015).

    CAS 
    Article 

    Google Scholar 

  • Pfister, C. A. et al. Historical baselines and the future of shell calcification for a foundation species in a changing ocean. Proc. Biol. Sci. 283, 20160392 (2016).

    Google Scholar 

  • Angilletta, M. J., Jr Zelic, M. H., Adrian, G. J., Hurliman, A. M. & Smith, C. D. Heat tolerance during embryonic development has not diverged among populations of a widespread species (Sceloporus undulatus). Conserv. Physiol. 1, cot018 (2013).

    Article 

    Google Scholar 

  • Hofmann, G. E. & Somero, G. Evidence for protein damage at environmental temperatures: Seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus. J. Exp. Biol. 198, 1509–1518 (1995).

    CAS 
    Article 

    Google Scholar 

  • Roberts, D. A., Hofmann, G. E. & Somero, G. N. Heat-Shock protein expression in Mytilus californianus: Acclimatization (seasonal and Tidal-Height comparisons) and acclimation effects. Biol. Bull. 192, 309–320 (1997).

    CAS 
    Article 

    Google Scholar 

  • Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).

    CAS 
    Article 

    Google Scholar 

  • Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).

    CAS 
    Article 

    Google Scholar 

  • Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. USA 108, 17905–17909 (2011).

    CAS 
    Article 

    Google Scholar 

  • Rummukainen, M. Changes in climate and weather extremes in the 21st century. Wiley Interdiscip. Rev. Clim. Change 3, 115–129 (2012).

    Article 

    Google Scholar 

  • Nehls, G. & Thiel, M. Large-scale distribution patterns of the mussel Mytilus edulis in the Wadden Sea of Schleswig-Holstein: do storms structure the ecosystem? Neth. J. Sea Res. 31, 181–187 (1993).

    Article 

    Google Scholar 

  • Sorte, C. J. B. et al. Thermal tolerance limits as indicators of current and future intertidal zonation patterns in a diverse mussel guild. Mar. Biol. 166, https://doi.org/10.1007/s00227-018-3452-6 (2019).

  • Gao, Y. et al. Evolution of trace metal and organic pollutant concentrations in the Scheldt River Basin and the Belgian Coastal Zone over the last three decades. J. Mar. Syst. 128, 52–61 (2013).

    Article 

    Google Scholar 

  • Camphuysen, K. & Vollaard, B. Oil pollution in the Dutch sector of the North Sea. In Oil Pollution in the North Sea (ed., Carpenter, A.) 117–140 (Springer International Publishing, 2016).

  • Brion, N., Jans, S., Chou, L. & Rousseau, V. Nutrient loads to the Belgian coastal zone. In Current Status of Eutrophication in the Belgian Coastal Zone (eds Rousseau, V., Lancelot, C. & Cox, D.) 17–43 (Presses Universitaires de Bruxelles, Brussels, 2008).

  • Gypens, N., Borges, A. V. & Lancelot, C. Effect of eutrophication on air-sea CO2 fluxes in the coastal Southern North Sea: a model study of the past 50 years. Glob. Chang. Biol. 15, 1040–1056 (2009).

    Article 

    Google Scholar 

  • Mackenzie, F. T., Ver, L. M. & Lerman, A. Century-scale nitrogen and phosphorus controls of the carbon cycle. Chem. Geol. 190, 13–32 (2002).

    CAS 
    Article 

    Google Scholar 

  • Burrows, M. T. & Hughes, R. N. Natural foraging of the dogwhelk, Nucella lapillus (Linnaeus); the weather and whether to feed. J. Moll. Stud. 55, 285–295 (1989).

    Article 

    Google Scholar 

  • Hughes, R. N. & Burrows, M. T. An interdisciplinary approach to the study of foraging behaviour in the predatory gastropod, Nucella lapillus (L.). Ethol. Ecol. Evol. 6, 75–85 (1994).

    Article 

    Google Scholar 

  • Trussell, G. C., Ewanchuk, P. J. & Bertness, M. D. Trait-mediated effects in rocky intertidal food chains: predator risk cues alter prey feeding rates. Ecology 84, 629–640 (2003).

    Article 

    Google Scholar 

  • Palmer, A. R. Effect of crab effluent and scent of damaged conspecifics on feeding, growth, and shell morphology of the Atlantic dogwhelk Nucella lapillus (L.). Hydrobiologia 193, 155–182 (1990).

    Article 

    Google Scholar 

  • Pascoal, S., Carvalho, G., Creer, S., Mendo, S. & Hughes, R. N. Plastic and heritable variation in shell thickness of the intertidal gastropod Nucella lapillus associated with risks of crab predation and wave action, and sexual maturation. PLoS ONE 7, e52134 (2012).

    CAS 
    Article 

    Google Scholar 

  • Avery, R. & Etter, R. J. Microstructural differences in the reinforcement of a gastropod shell against predation. Mar. Ecol. Prog. Ser. 323, 159–170 (2006).

    Article 

    Google Scholar 

  • Mayk, D. Transitional spherulitic layer in the muricid Nucella lapillus. J. Molluscan Stud. 87, https://doi.org/10.1093/mollus/eyaa035 (2020).

  • Berry, R. J. & Crothers, J. H. Visible variation in the dog whelk, Nucella lapillus. J. Zool. 174, 123–148 (1974).

    Article 

    Google Scholar 

  • Crothers, J. H. Two different patterns of shell-shape variation in the dog-whelk Nucella lapillus (L.). Biol. J. Linn. Soc. Lond. 25, 339–353 (1985).

    Article 

    Google Scholar 

  • Galante-Oliveira, S., Marçal, R., Pacheco, M. & Barroso, C. M. Nucella lapillus ecotypes at the southern distributional limit in Europe: Variation in shell morphology is not correlated with chromosome counts on the Portuguese Atlantic coast. J. Mollusc. Stud. 78, 147–150 (2011).

    Article 

    Google Scholar 

  • Appleton, R. D. & Palmer, A. R. Water-borne stimuli released by predatory crabs and damaged prey induce more predator-resistant shells in a marine gastropod. Proc. Natl Acad. Sci. USA 85, 4387–4391 (1988).

    CAS 
    Article 

    Google Scholar 

  • Cowell, E. B. & Crothers, J. H. On the occurrence of multiple rows of ‘teeth’ in the shell of the dog-whelk Nucella lapillus. J. Mar. Biol. Assoc. UK 50, 1101–1111 (1970).

    Article 

    Google Scholar 

  • Currey, J. D. & Hughes, R. N. Strength of the dogwhelk Nucella lapillus and the winkle Littorina littorea from different habitats. J. Anim. Ecol. 51, 47–56 (1982).

    Article 

    Google Scholar 

  • Hughes, R. N. & Elner, R. W. Tactics of a predator, Carcinus maenas, and morphological responses of the prey, Nucella lapillus. J. Anim. Ecol. 48, 65–78 (1979).

    Article 

    Google Scholar 

  • Vermeij, G. J. & Currey, J. D. Geographical variation in the shell strength of thaidid snail shells. Biol. Bull. 158, 383–389 (1980).

    Article 

    Google Scholar 

  • Benedetti-Cecchi, L. & Trussell, G. C. Rocky intertidal communities. In Marine Community Ecology and Conservation 203–225 (Sinauer Associates, Sunderland, MA, 2014).

  • Telesca, L. et al. Blue mussel shell shape plasticity and natural environments: a quantitative approach. Sci. Rep. 8, 2865 (2018).

    Article 
    CAS 

    Google Scholar 

  • Cooke, A. H. & Reed, F. R. C. The Cambridge Natural History (Macmillan Company, 1895).

  • Kitching, J. A. & Ebling, F. J. In Ecological Studies at Lough Ine Vol. 4 197–291 (ed. Cragg, J. B.) (Academic Press, 1967).

  • Crothers, J. H. Dog-whelks: an introduction to the biology of Nucella lapillus (L.). Field Stud. 6, 291–360 (1985).

  • Chadwick, M., Harper, E. M., Lemasson, A., Spicer, J. I. & Peck, L. S. Quantifying susceptibility of marine invertebrate biocomposites to dissolution in reduced pH. R. Soc. Open Sci. 6, 190252 (2019).

    CAS 
    Article 

    Google Scholar 

  • Laing, I. Effect of temperature and ration on growth and condition of king scallop (Pecten maximus) spat. Aquaculture 183, 325–334 (2000).

  • Thouzeau, G. et al. Growth of Argopecten purpuratus (Mollusca: Bivalvia) on a natural bank in Northern Chile: sclerochronological record and environmental controls. Aquat. Living Resour. 21, 45–55 (2008).

    Article 

    Google Scholar 

  • Kleinman, S., Hatcher, B. G., Scheibling, R. E., Taylor, L. H. & Hennigar, A. W. Shell and tissue growth of juvenile sea scallops (Placopecten magellanicus) in suspended and bottom culture in Lunenburg Bay, Nova Scotia. Aquaculture 142, 75–97 (1996).

    Article 

    Google Scholar 

  • Doroudi, M. S., Southgate, P. C. & Mayer, R. J. The combined effects of temperature and salinity on embryos and larvae of the black lip pearl oyster, Pinctada margaritifera (L.). Aquacult. Res. 30, 271–277 (1999).

    Article 

    Google Scholar 

  • Tomaru, Y., Kumatabara, Y., Kawabata, Z. & Nakano, S. Effect of water temperature and chlorophyll abundance on shell growth of the Japanese pearl oyster, Pinctada fucata martensii, in suspended culture at different depths and sites. Aquacult. Res. 33, 109–116 (2002).

    Article 

    Google Scholar 

  • Schöne, B., Tanabe, K., Dettman, D. & Sato, S. Environmental controls on shell growth rates and δ18O of the shallow-marine bivalve mollusk Phacosoma japonicum in Japan. Mar. Biol. 142, 473–485 (2003).

    Article 

    Google Scholar 

  • Ballesta-Artero, I., Witbaard, R., Carroll, M. L. & Meer, J van der Environmental factors regulating gaping activity of the bivalve Arctica islandica in northern Norway. Mar. Biol. 164, 116 (2017).

    Article 

    Google Scholar 

  • Witbaard, R. Growth variations in Arctica islandica L. (Mollusca): a reflection of hydrography-related food supply. ICES J. Mar. Sci. 53, 981–987 (1996).

    Article 

    Google Scholar 

  • Joubert, C. et al. Temperature and food influence shell growth and mantle gene expression of shell matrix proteins in the pearl oyster Pinctada margaritifera. PLoS ONE 9, e103944 (2014).

    Article 
    CAS 

    Google Scholar 

  • Fay, A. R. & McKinley, G. A. Global trends in surface ocean pCO2 from in situ data. Global Biogeochem. Cycles 27, 541–557 (2013).

    CAS 
    Article 

    Google Scholar 

  • Ostle, C. et al. Carbon Dioxide and Ocean Acidification Observations in UK Waters. Synthesis report with a focus on 2010–2015. 44 https://doi.org/10.13140/RG.2.1.4819.4164 (2016).

  • Borges, A. V. & Gypens, N. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than ocean acidification. Limnol. Oceanogr. 55, 346–353 (2010).

    CAS 
    Article 

    Google Scholar 

  • Clarke, A. & Beaumont, J. C. An extreme marine environment: a 14-month record of temperature in a polar tidepool. Polar Biol. 43, 2021–2030 (2020).

    Article 

    Google Scholar 

  • Fisher, J. A. D., Rhile, E. C., Liu, H. & Petraitis, P. S. An intertidal snail shows a dramatic size increase over the past century. Proc. Natl Acad. Sci. USA 106, 5209–5212 (2009).

    CAS 
    Article 

    Google Scholar 

  • Clarke, A. Seasonal acclimatization and latitudinal compensation in metabolism: Do they exist? Funct. Ecol. 7, 139–149 (1993).

    Article 

    Google Scholar 

  • Sanders, T., Thomsen, J., Müller, J. D., Rehder, G. & Melzner, F. Decoupling salinity and carbonate chemistry: low calcium ion concentration rather than salinity limits calcification in Baltic Sea mussels. Biogeosciences 18, 2573–2590 (2021).

    CAS 
    Article 

    Google Scholar 

  • Palmer, A. R. Relative cost of producing skeletal organic matrix versus calcification: evidence from marine gastropods. Mar. Biol. 75, 287–292 (1983).

    Article 

    Google Scholar 

  • Palmer, A. R. Calcification in marine molluscs: how costly is it? Proc. Natl. Acad. Sci. USA 89, 1379–1382 (1992).

  • Watson, S.-A., Morley, S. A. & Peck, L. S. Latitudinal trends in shell production cost from the tropics to the poles. Sci. Adv. 3, e1701362 (2017).

    Article 
    CAS 

    Google Scholar 

  • Burton, E. A. & Walter, L. M. Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control? Geology 15, 111–114 (1987).

    CAS 
    Article 

    Google Scholar 

  • Sanders, T., Schmittmann, L., Nascimento-Schulze, J. C. & Melzner, F. High calcification costs limit mussel growth at low salinity. Front. Mar. Sci. 5, 352 (2018).

    Article 

    Google Scholar 

  • Etter, R. J. Assymmetrical development plasticity in an intertidal snail. Evolution 42, 322–334 (1988).

    Article 

    Google Scholar 

  • Largen, M. J. The influence of water temperature upon the life of the dog-whelk Thais lapillus (Gastropoda: Prosobranchia). J. Anim. Ecol. 36, 207–214 (1967).

    Article 

    Google Scholar 

  • Stickle, W. B., Moore, M. N. & Bayne, B. L. Effects of temperature, salinity and aerial exposure on predation and lysosomal stability of the dogwhelk Thais (Nucella) lapillus (L.). J. Exp. Mar. Biol. Ecol. 93, 235–258 (1985).

    Article 

    Google Scholar 

  • Queirós, A. M. et al. Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem. Glob. Chang. Biol. 21, 130–143 (2015).

    Article 

    Google Scholar 

  • Hughes, R. N. Annual production of two Nova Scotian populations of Nucella lapillus (L.). Oecologia 8, 356–370 (1972).

    CAS 
    Article 

    Google Scholar 

  • Gattuso, J.-P., Frankignoulle, M., Bourge, I., Romaine, S. & Buddemeier, R. W. Effect of calcium carbonate saturation of seawater on coral calcification. Glob. Planet. Change 18, 37–46 (1998).

    Article 

    Google Scholar 

  • Schneider, K. & Erez, J. The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol. Oceanogr. 51, 1284–1293 (2006).

    CAS 
    Article 

    Google Scholar 

  • Kremling, K. & Wilhelm, G. Recent increase of the calcium concentrations in baltic sea waters. Mar. Pollut. Bull. 34, 763–767 (1997).

    CAS 
    Article 

    Google Scholar 

  • Riebesell, U., Fabry, V. J., Hansson, L. & Gattuso, J.-P. Guide to Best Practices for Ocean Acidification Research and Data Reporting (Office for Official Publications of the European Communities, 2011).

  • Desmit, X. et al. Changes in chlorophyll concentration and phenology in the North Sea in relation to de eutrophication and sea surface warming. Limnol. Oceanogr. 65, 828–847 (2020).

    CAS 
    Article 

    Google Scholar 

  • Petraitis, P. S. & Dudgeon, S. R. Declines over the last two decades of five intertidal invertebrate species in the western North Atlantic. Commun. Biol. 3, 591 (2020).

    Article 

    Google Scholar 

  • Mayk, D., Peck, L. S. & Harper, E. M. Evidence for carbonate system mediated shape shift in an intertidal predatory gastropod. Front. Mar. Sci. 9, 894182 (2022).

    Article 

    Google Scholar 

  • Page, H. M. & Hubbard, D. M. Temporal and spatial patterns of growth in mussels Mytilus edulis on an offshore platform: relationships to water temperature and food availability. J. Exp. Mar. Biol. Ecol. 111, 159–179 (1987).

    Article 

    Google Scholar 

  • Thomsen, J., Casties, I., Pansch, C., Körtzinger, A. & Melzner, F. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Glob. Chang. Biol. 19, 1017–1027 (2013).

    Article 

    Google Scholar 

  • Wołowicz, M., Sokołowski, A., Bawazir, A. S. & Lasota, R. Effect of eutrophication on the distribution and ecophysiology of the mussel Mytilus trossulus (Bivalvia) in southern Baltic Sea (the Gulf of Gdańsk). Limnol. Oceanogr. 51, 580–590 (2006).

    Article 

    Google Scholar 

  • Moran, P. J. & Grant, T. R. The effects of industrial pollution on the development and succession of marine fouling communities I. Analysis of species richness and frequency data. Mar. Ecol. 10, 231–246 (1989).

    Article 

    Google Scholar 

  • Moran, P. J. & Grant, T. R. Transference of marine fouling communities between polluted and unpolluted sites: impact on structure. Environ. Pollut. 72, 89–102 (1991).

    CAS 
    Article 

    Google Scholar 

  • Rastetter, E. B. & Cooke, W. J. Responses of marine fouling communities to sewage abatement in Kaneohe Bay, Oahu, Hawaii. Mar. Biol. 53, 271–280 (1979).

    Article 

    Google Scholar 

  • Boschma, H. Elminius modestus in the Netherlands. Nature 161, 403–404 (1948).

    Article 

    Google Scholar 

  • Wolff, W. J. Non-indigenous marine and estuarine species in the Netherlands. Zool. Meded. 79-1, 1–116 (2005).

    Google Scholar 

  • Kerckhof, F. Barnacles (Cirripedia, Balanomorpha) in Belgian waters, an overview of the species and recent evolutions, with emphasis on exotic species. Bull. Inst. R. Sci. Nat. Belg. Biol./Bull. K. Belg. Inst. Natuurwet. Biol. 72, 93–104 (2002).

    Google Scholar 

  • Gibbs, P. E., Bryan, G. W. & Pascoe, P. L. TBT-induced imposex in the dogwhelk, Nucella lapillus: geographical uniformity of the response and effects. Mar. Environ. Res. 32, 79–87 (1991).

    CAS 
    Article 

    Google Scholar 

  • Gibbs, P. E. Biological Effects of Contaminants: Use of Imposex in the Dogwhelk (Nucella lapillus) as a Bioindicator of Tributyltin Pollution. 37 https://doi.org/10.25607/OBP-272 (1999).

  • Oehlmann, J. et al. Imposex in Nucella lapillus and intersex in Littorina littorea: Interspecific comparison of two TBT-induced effects and their geographical uniformity. In Aspects of Littorinid Biology (eds O’Riordan, R. M., Burnell, G. M., Davies, M. S. & Ramsay, N. F.) 199–213 (Springer Netherlands, 1998).

  • Kerckhof, F. Over het verdwijnen van de purperslak Nucella lapillus (Linnaeus, 1758), langs onze kust. De Strandvlo 8, 82–85 (1988).

    Google Scholar 

  • De Blauwe, H. & D’Udekem d’Acoz, C. Voortplantende populatie van de purperslak (Nucella lapillus) in België na meer dan 30 jaar afwezigheid (Mollusca, Gastropoda, Muricidae). De Strandvlo 32, 127–131 (2012).

    Google Scholar 

  • Galante-Oliveira, S. et al. Factors affecting RPSI in imposex monitoring studies using Nucella lapillus (L.) as bioindicator. J. Environ. Monit. 12, 1055–1063 (2010).

    CAS 
    Article 

    Google Scholar 

  • National Centers for Environmental Information/NESDIS/NOAA/U.S. Department of Commerce et al. International Comprehensive Ocean–Atmosphere Data Set (ICOADS) Release 3, Monthly Summaries https://doi.org/10.5065/D6V40SFD (2016).

  • ICES. Dataset on Ocean Hydrography (ICES, 2020).

  • Giardina, C. R. & Kuhl, F. P. Accuracy of curve approximation by harmonically related vectors with elliptical loci. Comput. Graph. Image Process. 6, 277–285 (1977).

    Article 

    Google Scholar 

  • Kuhl, F. P. & Giardina, C. R. Elliptic fourier features of a closed contour. Comput. Graph. Image Process. 18, 236–258 (1982).

    Article 

    Google Scholar 

  • Bonhomme, V., Picq, S., Gaucherel, C. & Claude, J. Momocs: outline analysis using R. J. Stat. Softw. 56, 1–24 (2014).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2020).

  • Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).

    Article 

    Google Scholar 

  • Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article 

    Google Scholar 

  • Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).

    Article 

    Google Scholar 

  • Bartoń, K. MuMIn: Multi-Model Inference https://cran.r-project.org/web/packages/MuMIn/index.html (2020).

  • Akaike, H. Information theory and an extension of the maximum likelihood principle. Springer Ser. Stat. 610–624 https://doi.org/10.1007/978-1-4612-0919-5/_38 (1992).


  • Source: Ecology - nature.com

    Insights into amino acid fractionation and incorporation by compound-specific carbon isotope analysis of three-spined sticklebacks

    Periodically taken photographs reveal the effect of pollinator insects on seed set in lotus flowers