in

Siberian carbon sink reduced by forest disturbances

  • Keenan, R. J. et al. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manage. 352, 9–20 (2015).

    Article 

    Google Scholar 

  • Arneth, A. et al. in Special Report on Climate Change and Land (eds Shukla, P. R. et al.) Ch. 1 (IPCC, 2019).

  • Piao, S. et al. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, GB3018 (2007).

    Article 

    Google Scholar 

  • Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    Article 

    Google Scholar 

  • Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article 

    Google Scholar 

  • Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).

    Article 

    Google Scholar 

  • Chen, J. M. et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 10, 4259 (2019).

    Article 

    Google Scholar 

  • Myneni, R. B. et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).

    Article 

    Google Scholar 

  • Filipchuk, A. et al. Russian forests: a new approach to the assessment of carbon stocks and sequestration capacity. Environ. Dev. 26, 68–75 (2018).

    Article 

    Google Scholar 

  • Goodale, C. L. et al. Forest carbon sinks in the Northern Hemisphere. Ecol. Appl. 12, 891–899 (2002).

    Article 

    Google Scholar 

  • Tchebakova, N. M. et al. Energy and mass exchange and the productivity of main Siberian ecosystems (from eddy covariance measurements). 2. Carbon exchange and productivity. Biol. Bull. 42, 579–588 (2015).

    Article 

    Google Scholar 

  • Vaganov, E. A. et al. Forests and swamps of Siberia in the global carbon cycle. Contemp. Probl. Ecol. 1, 168–182 (2008).

    Article 

    Google Scholar 

  • Schepaschenko, D. et al. Russian forest sequesters substantially more carbon than previously reported. Sci. Rep. 11, 12825 (2021).

    Article 

    Google Scholar 

  • Shvidenko, A. & Schepaschenko, D. Climate change and wildfires in Russia. Contemp. Probl. Ecol. 6, 683–692 (2013).

    Article 

    Google Scholar 

  • Bradshaw, C. J. A. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).

    Article 

    Google Scholar 

  • Curtis, P. G. et al. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    Article 

    Google Scholar 

  • Sukhinin, A. I. et al. AVHRR-based mapping of fires in Russia: new products for fire management and carbon cycle studies. Remote Sens. Environ. 93, 546–564 (2004).

    Article 

    Google Scholar 

  • Soja, A. J. et al. Climate-induced boreal forest change: predictions versus current observations. Glob. Planet. Change 56, 274–296 (2007).

    Article 

    Google Scholar 

  • Dolman, A. J. et al. An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods. Biogeosciences 9, 5323–5340 (2012).

    Article 

    Google Scholar 

  • Schaphoff, S. et al. Tamm review: Observed and projected climate change impacts on Russia’s forests and its carbon balance. For. Ecol. Manage. 361, 432–444 (2016).

    Article 

    Google Scholar 

  • de Jong, R. et al. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Change Biol. 18, 642–655 (2012).

    Article 

    Google Scholar 

  • Buermann, W. et al. Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophys. Res. Lett. 41, 1995–2002 (2014).

    Article 

    Google Scholar 

  • Rödig, E. et al. Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: Linking remote sensing, forest modelling and field inventory. Glob. Ecol. Biogeogr. 26, 1292–1302 (2017).

    Article 

    Google Scholar 

  • Quegan, S. et al. Estimating the carbon balance of central Siberia using a landscape-ecosystem approach, atmospheric inversion and dynamic global vegetation models. Glob. Change Biol. 17, 351–365 (2011).

    Article 

    Google Scholar 

  • Gurney, K. R. et al. Interannual variations in continental-scale net carbon exchange and sensitivity to observing networks estimated from atmospheric CO2 inversions for the period 1980 to 2005. Glob. Biogeochem. Cycles 22, GB3025 (2008).

    Article 

    Google Scholar 

  • Stephens, B. B. et al. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316, 1732–1735 (2007).

    Article 

    Google Scholar 

  • Leskinen, P. et al. Russian Forests and Climate Change: What Science Can Tell Us 11 (EFI, 2020); https://doi.org/10.36333/wsctu11

  • Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).

    Article 

    Google Scholar 

  • Stow, D. A. et al. Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems. Remote Sens. Environ. 89, 281–308 (2004).

    Article 

    Google Scholar 

  • Karlsen, S. R. et al. A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high Arctic plant productivity. Environ. Res. Lett. 13, 025011 (2018).

    Article 

    Google Scholar 

  • Ding, Z. et al. Nearly half of global vegetated area experienced inconsistent vegetation growth in terms of greenness, cover, and productivity. Earths Future 8, e2020EF001618 (2020).

    Article 

    Google Scholar 

  • Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants 5, 944–951 (2019).

    Article 

    Google Scholar 

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article 

    Google Scholar 

  • Giglio, L. et al. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).

    Article 

    Google Scholar 

  • Blunden, J. & Arndt, D. S. State of the climate in 2015. Bull. Am. Meteorol. Soc. 97, Si–S275 (2016).

    Article 

    Google Scholar 

  • Bastos, A. et al. Was the extreme Northern Hemisphere greening in 2015 predictable? Environ. Res. Lett. 12, 044016 (2017).

    Article 

    Google Scholar 

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article 

    Google Scholar 

  • Kukavskaya, E. A. et al. Biomass dynamics of central Siberian Scots pine forests following surface fires of varying severity. Int. J. Wildland Fire 23, 872–886 (2014).

    Article 

    Google Scholar 

  • Gauthier, S. et al. Boreal forest health and global change. Science 349, 819 (2015).

    Article 

    Google Scholar 

  • Harris, N. L. et al. Baseline map of carbon emissions from deforestation in tropical regions. Science 336, 1573 (2012).

    Article 

    Google Scholar 

  • Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).

    Article 

    Google Scholar 

  • Rogers, B. M. et al. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015).

    Article 

    Google Scholar 

  • Shvetsov, E. G. et al. Assessment of post-fire vegetation recovery in southern Siberia using remote sensing observations. Environ. Res. Lett. 14, 055001 (2019).

    Article 

    Google Scholar 

  • Wang, J. A. et al. Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nat. Clim. Change 11, 435–441 (2021).

    Article 

    Google Scholar 

  • Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 7, eabe9829 (2021).

    Article 

    Google Scholar 

  • Shuman, J. K. et al. Forest forecasting with vegetation models across Russia. Can. J. For. Res. 45, 175–184 (2014).

    Article 

    Google Scholar 

  • Flannigan, M. et al. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Change Biol. 15, 549–560 (2009).

    Article 

    Google Scholar 

  • Yuan, W. et al. Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome. Nat. Commun. 5, 4270 (2014).

    Article 

    Google Scholar 

  • Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).

    Article 

    Google Scholar 

  • Larjavaara, M. et al. Post-fire carbon and nitrogen accumulation and succession in Central Siberia. Sci. Rep. 7, 12776 (2017).

    Article 

    Google Scholar 

  • Berner, L. T. et al. Cajander larch (Larix cajanderi) biomass distribution, fire regime and post-fire recovery in northeastern Siberia. Biogeosciences 9, 3943–3959 (2012).

    Article 

    Google Scholar 

  • Myneni, R. et al. MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid v.006 (LAADS DAAC, 2015).

  • Houghton, R. A. et al. Mapping Russian forest biomass with data from satellites and forest inventories. Environ. Res. Lett. 2, 045032 (2007).

    Article 

    Google Scholar 

  • DiMiceli, C. et al. Annual Global Automated MODIS Vegetation Continuous Fields (MOD44B) at 250m Spatial Resolution for Data Years Beginning Day 65, 2000–2014, Collection 5 Percent Tree Cover v.6 (University of Maryland, 2017).

  • Simard, M. et al. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116, G04021 (2011).

    Google Scholar 

  • Broxton, P. et al. A global land cover climatology using MODIS data. J. Appl. Meteorol. Climatol. 53, 1593–1605 (2014).

    Article 

    Google Scholar 

  • Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).

    Article 

    Google Scholar 

  • Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data. 13, 3927–3950 (2021).

    Article 

    Google Scholar 

  • Carreiras, J. M. B. et al. Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions. Remote Sens. Environ. 196, 154–162 (2017).

    Article 

    Google Scholar 

  • Penman, J. et al. Good Practice Guidance for Land Use, Land-Use Change and Forestry (IGES, 2013).

  • Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).

    Article 

    Google Scholar 

  • Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).

    Article 

    Google Scholar 

  • Fernandez-Moran, R. et al. SMOS-IC: an alternative SMOS soil moisture and vegetation optical depth product. Remote Sens. 9, 457 (2017).

    Article 

    Google Scholar 

  • Wigneron, J.-P. et al. SMOS-IC data record of soil moisture and L-VOD: historical development, applications and perspectives. Remote Sens. Environ. 254, 112238 (2021).

    Article 

    Google Scholar 

  • Mitchard, E. T. A. et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr. 23, 935–946 (2014).

    Article 

    Google Scholar 

  • Mitchard, E. T. A. et al. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance Manage. 8, 10 (2013).

    Article 

    Google Scholar 

  • Harmon, M. E. et al. Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance Manage. 15, 1 (2020).

    Article 

    Google Scholar 

  • Bartalev, S. A. & Stytsenko, F. V. Assessment of forest-stand destruction by fires based on remote-sensing data on the seasonal distribution of burned areas. Contemp. Probl. Ecol. 14, 711–716 (2021).

    Article 

    Google Scholar 

  • van Wees, D. et al. The role of fire in global forest loss dynamics. Glob. Change Biol. 27, 2377–2391 (2021).

    Article 

    Google Scholar 

  • Vicente‐Serrano, S. M. et al. A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J. Clim. 23, 1696–1718 (2010).

    Article 

    Google Scholar 

  • Schepaschenko, D. et al. A new hybrid land cover dataset for Russia: a methodology for integrating statistics, remote sensing and in situ information. J. Land Use Sci. 6, 245–259 (2011).

    Article 

    Google Scholar 

  • Du, J. et al. A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations. Earth Syst. Sci. Data. 9, 791–808 (2017).

    Article 

    Google Scholar 

  • Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).

    Article 

    Google Scholar 

  • De Grandpré, L. et al. Long-term post-fire changes in the northeastern boreal forest of Quebec. J. Veg. Sci. 11, 791–800 (2000).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Larvicidal and repellent potential of Ageratum houstonianum against Culex pipiens

    Microparticles could help prevent vitamin A deficiency