in

Size structure of the coral Stylophora pistillata across reef flat zones in the central Red Sea

  • Reaka-Kudla, M. L. The global biodiversity of coral reefs: a comparison with rain forests. Biodivers. II. Underst. Prot. Our Biol. Resour. 2, 551 (1997).

    Google Scholar 

  • Connell, J. H. Population ecology of reef-building corals. in Biology and Geology of Coral Reefs (eds. Jones, O. A. & Endean, R.) 205–245 (Academic Press, 1973). doi:https://doi.org/10.1016/B978-0-12-395526-5.50015-8.

  • Berumen, M. L. et al. The status of coral reef ecology research in the Red Sea. Coral Reefs 32, 737–748 (2013).

    ADS 
    Article 

    Google Scholar 

  • Hughes, T. P., Graham, N. A., Jackson, J. B., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Edmunds, P. J. & Riegl, B. Urgent need for coral demography in a world where corals are disappearing. Mar. Ecol. Prog. Ser. 635, 233–242 (2020).

    ADS 
    Article 

    Google Scholar 

  • Pisapia, C. et al. Projected shifts in coral size structure in the Anthropocene. Adv Mar Biol 87, 31–60 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Meesters, E. et al. Colony size-frequency distributions of scleractinian coral populations: spatial and interspecific variation. Mar. Ecol. Prog. Ser. 209, 43–54 (2001).

    ADS 
    Article 

    Google Scholar 

  • Riegl, B. et al. Demographic mechanisms of reef coral species winnowing from communities under increased environmental stress. Front. Mar. Sci. 4, 344 (2017).

    Article 

    Google Scholar 

  • Pisapia, C., Burn, D. & Pratchett, M. Changes in the population and community structure of corals during recent disturbances (February 2016-October 2017) on Maldivian coral reefs. Sci. Rep. 9, 1–12 (2019).

    CAS 
    Article 

    Google Scholar 

  • Dietzel, A., Bode, M., Connolly, S. R. & Hughes, T. P. Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef. Proc. R. Soc. B 287, 20201432 (2020).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • Lachs, L. et al. Linking population size structure, heat stress and bleaching responses in a subtropical endemic coral. Coral Reefs 40, 777–790 (2021).

    Article 

    Google Scholar 

  • McClanahan, T., Ateweberhan, M. & Omukoto, J. Long-term changes in coral colony size distributions on Kenyan reefs under different management regimes and across the 1998 bleaching event. Mar. Biol. 153, 755–768 (2008).

    Article 

    Google Scholar 

  • Grimsditch, G. et al. Variation in size frequency distribution of coral populations under different fishing pressures in two contrasting locations in the Indian Ocean. Mar. Environ. Res. 131, 146–155 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bak, R. P. & Meesters, E. H. Coral population structure: the hidden information of colony size-frequency distributions. Mar. Ecol. Prog. Ser. 162, 301–306 (1998).

    ADS 
    Article 

    Google Scholar 

  • Hughes, T. & Jackson, J. Do corals lie about their age? Some demographic consequences of partial mortality, fission, and fusion. Science 209, 713–715 (1980).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hughes, T. P. & Jackson, J. Population dynamics and life histories of foliaceous corals. Ecol. Monogr. 55, 141–166 (1985).

    Article 

    Google Scholar 

  • Soong, K. Colony size as a species character in massive reef corals. Coral Reefs 12, 77–83 (1993).

    ADS 
    Article 

    Google Scholar 

  • Bak, R. P. & Meesters, E. H. Population structure as a response of coral communities to global change. Am. Zool. 39, 56–65 (1999).

    Article 

    Google Scholar 

  • Adjeroud, M., Pratchett, M. S., Kospartov, M. C., Lejeusne, C. & Penin, L. Small-scale variability in the size structure of scleractinian corals around Moorea, French Polynesia: patterns across depths and locations. Hydrobiologia 589, 117–126 (2007).

    Article 

    Google Scholar 

  • Adjeroud, M., Mauguit, Q. & Penin, L. The size-structure of corals with contrasting life-histories: A multi-scale analysis across environmental conditions. Mar. Environ. Res. 112, 131–139 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bauman, A. G. et al. Variation in the size structure of corals is related to environmental extremes in the Persian Gulf. Mar. Environ. Res. 84, 43–50 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Smith, L., Devlin, M., Haynes, D. & Gilmour, J. A demographic approach to monitoring the health of coral reefs. Mar. Pollut. Bull. 51, 399–407 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lowe, R. J. & Falter, J. L. Oceanic forcing of coral reefs. Annu. Rev. Mar. Sci. 7, 43–66 (2015).

    ADS 
    Article 

    Google Scholar 

  • Thornborough, K., Davies, P. Reef flats. Encycl. Mod. Coral Reefs 869–876 (2011).

  • Camp, E. F. et al. The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Front. Mar. Sci. 5, 4 (2018).

    Article 

    Google Scholar 

  • Bellwood, D. R. et al. The role of the reef flat in coral reef trophodynamics: Past, present, and future. Ecol. Evol. 8, 4108–4119 (2018).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • Pineda, J. et al. Two spatial scales in a bleaching event: Corals from the mildest and the most extreme thermal environments escape mortality. Limnol. Oceanogr. https://doi.org/10.4319/lo.2013.58.5.1531 (2013).

    Article 

    Google Scholar 

  • Riegl, B. M., Bruckner, A. W., Rowlands, G. P., Purkis, S. J. & Renaud, P. Red Sea coral reef trajectories over 2 decades suggest increasing community homogenization and decline in coral size. PLoS ONE 7, e38396 (2012).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • Riegl, B., Berumen, M. & Bruckner, A. Coral population trajectories, increased disturbance and management intervention: A sensitivity analysis. Ecol. Evol. https://doi.org/10.1002/ece3.519 (2013).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Loya, Y. The red sea coral Stylophora pistillata is an r strategist. Nature https://doi.org/10.1038/259478a0 (1976).

    Article 
    PubMed 

    Google Scholar 

  • Lozano-Cortés, D. F. & Berumen, M. L. Colony size-frequency distribution of pocilloporid juvenile corals along a natural environmental gradient in the Red Sea. Mar. Pollut. Bull. 105, 546–552 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ellis, J. et al. Cross shelf benthic biodiversity patterns in the Southern Red Sea. Sci. Rep. 7, 1–14 (2017).

    Article 
    CAS 

    Google Scholar 

  • Furby, K. A., Bouwmeester, J. & Berumen, M. L. Susceptibility of central Red Sea corals during a major bleaching event. Coral Reefs 32, 505–513 (2013).

    ADS 
    Article 

    Google Scholar 

  • Monroe, A. A. et al. In situ observations of coral bleaching in the central Saudi Arabian Red Sea during the 2015/2016 global coral bleaching event. PLoS ONE 13, e0195814 (2018).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davis, K. et al. Observations of the thermal environment on Red Sea platform reefs: A heat budget analysis. Coral Reefs 30, 25–36 (2011).

    ADS 
    Article 

    Google Scholar 

  • Liu, G. et al. Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA Coral Reef Watch. Remote Sens. 6, 11579–11606 (2014).

    ADS 
    Article 

    Google Scholar 

  • Voolstra, C. R. et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob. Change Biol. https://doi.org/10.1111/gcb.15148 (2020).

    Article 

    Google Scholar 

  • Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).

    Google Scholar 

  • Morais, J., Morais, R. A., Tebbett, S. B., Pratchett, M. S. & Bellwood, D. R. Dangerous demographics in post-bleach corals reveal boom-bust versus protracted declines. Sci. Rep. 11, 1–7 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hall, V. R. & Hughes, T. P. Reproductive strategies of modular organisms: Comparative studies of reef-building corals. Ecology https://doi.org/10.2307/2265514 (1996).

    Article 

    Google Scholar 

  • Rinkevich, B. & Loya, Y. Reproduction of the Red Sea coral Stylophora pistillata. 2. Synchronization in breeding and seasonality of planulae shedding. Mar. Ecol. Prog. Ser. 1, 145–152 (1979).

    ADS 
    Article 

    Google Scholar 

  • Komsta, L. & Novomestky, F. Moments, cumulants, skewness, kurtosis and related tests. R Package Version 14, (2015).

  • Anderson, M., Gorley, R. & Clarke, K. PERMANOVA+ for PRIMER: guide to software and statistical methods. Primer-E Plymouth UK (2008).

  • Meziere, Z. et al. Stylophora under stress: A review of research trends and impacts of stressors on a model coral species. Sci. Total Environ. 816, 151639 (2022).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rinkevich, B. & Loya, Y. Reproduction of the Red Sea coral Stylophora pistillata 1. Gonads and planulae. Mar. Ecol. Prog. Ser. 1, 133–144 (1979).

    ADS 
    Article 

    Google Scholar 

  • Nishikawa, A., Katoh, M. & Sakai, K. Larval settlement rates and gene flow of broadcast-spawning (Acropora tenuis) and planula-brooding (Stylophora pistillata) corals. Mar. Ecol. Progress Ser. https://doi.org/10.3354/meps256087 (2003).

    Article 

    Google Scholar 

  • Monroe, A. Genetic differentiation across multiple spatial scales of the Red Sea of the corals Stylophora pistillata and Pocillopora verrucosa. M.S. thesis, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia (2015).

  • Gouezo, M. et al. Relative roles of biological and physical processes influencing coral recruitment during the lag phase of reef community recovery. Sci. Rep. 10, 1–12 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Boco, S. R., Cabansag, J. B. P., Jamodiong, E. A. & Ticzon, V. S. Size-frequency distributions of scleractinian coral (Porites spp.) colonies inside and outside a marine reserve in Leyte Gulf, central Philippines. Reg. Stud. Mar. Sci. 35, 101147 (2020).

    Google Scholar 

  • River, G. F. & Edmunds, P. J. Mechanisms of interaction between macroalgae and scleractinians on a coral reef in Jamaica. J. Exp. Mar. Biol. Ecol. 261, 159–172 (2001).

    Article 
    PubMed 

    Google Scholar 

  • Kuffner, I. B. et al. Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar. Ecol. Prog. Ser. 323, 107–117 (2006).

    ADS 
    Article 

    Google Scholar 

  • Hughes, T. & Jackson, J. Do corals lie about their age? Some demographic consequences of partial mortality, fission, and fusion. Science 209, 713–715 (1980).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lewis, J. B. Abundance, distribution and partial mortality of the massive coral Siderastrea siderea on degrading coral reefs at Barbados West Indies. Mar. Pollut. Bull. 34, 622–627 (1997).

    CAS 
    Article 

    Google Scholar 

  • Meesters, E. H., Wesseling, I. & Bak, R. P. Coral colony tissue damage in six species of reef-building corals: partial mortality in relation with depth and surface area. J. Sea Res. 37, 131–144 (1997).

    ADS 
    Article 

    Google Scholar 

  • Meesters, E. H., Wesseling, I. & Bak, R. P. Partial mortality in three species of reef-building corals and the relation with colony morphology. Bull. Mar. Sci. 58, 838–852 (1996).

    Google Scholar 

  • Graham, J. & Van Woesik, R. The effects of partial mortality on the fecundity of three common Caribbean corals. Mar. Biol. 160, 2561–2565 (2013).

    Article 

    Google Scholar 

  • Rinkevich, B. & Loya, Y. Intraspecific competitive networks in the Red Sea coral Stylophora pistillata. Coral Reefs https://doi.org/10.1007/BF00571193 (1983).

    Article 

    Google Scholar 

  • Takabayashi, M. & Hoegh-Guldberg, O. Ecological and physiological differences between two colour morphs of the coral Pocillopora damicornis. Mar. Biol. 123, 705–714 (1995).

    Article 

    Google Scholar 

  • Innis, T., Cunning, R., Ritson-Williams, R., Wall, C. & Gates, R. Coral color and depth drive symbiosis ecology of Montipora capitata in Kāne ‘ohe Bay, O ‘ahu, Hawai ‘i. Coral Reefs 37, 423–430 (2018).

    ADS 
    Article 

    Google Scholar 

  • Gochfeld, D., Ansley, M., Ankisetty, S. & Aeby, G. Antibacterial chemical resistance to disease in the Hawaiian coral Montipora capitata. Planta Med. 80, CL31 (2014).

    Article 

    Google Scholar 

  • Shore-Maggio, A., Callahan, S. M. & Aeby, G. S. Trade-offs in disease and bleaching susceptibility among two color morphs of the Hawaiian reef coral Montipora capitata. Coral Reefs 37, 507–517 (2018).

    ADS 
    Article 

    Google Scholar 

  • Dove, S. G., Takabayashi, M. & Hoegh-Guldberg, O. Isolation and partial characterization of the pink and blue pigments of pocilloporid and acroporid corals. Biol. Bull. 189, 288–297 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hume, B. C. C., Mejia-Restrepo, A., Voolstra, C. R. & Berumen, M. L. Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs https://doi.org/10.1007/s00338-020-01917-7 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A paradigm shift in the quantification of wave energy attenuation due to saltmarshes based on their standing biomass

    Ecosystem size-induced environmental fluctuations affect the temporal dynamics of community assembly mechanisms