Roberson, L. A., Watson, R. A. & Klein, C. J. Over 90 endangered fish and invertebrates are caught in industrial fisheries. Nat. Commun. 11, 1–8 (2020).
Google Scholar
Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).
Google Scholar
Dulvy, N. K. et al. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31, 1–15 (2021).
Google Scholar
MacNeil, M. A. et al. Global status and conservation potential of reef sharks. Nature 583, 801–806 (2020).
Google Scholar
Dent, F. & Clarke, S. State of the global market for shark products. FAO Fish. Aquac. Tech. Pap. No. 590. 187 (2015).
FAO. 2008. The State of World Fisheries and Aquaculture. Food and Agriculture Organization of the United Nations, Rome (2008).
Davidson, L. N. K., Krawchuk, M. A. & Dulvy, N. K. Why have global shark and ray landings declined: improved management or over fishing? Fish Fish 17, 438–458 (2016).
Google Scholar
Clarke, S. C. et al. Global estimates of shark catches using trade records from commercial markets. Ecol. Lett. 9, 1115–1126 (2006).
Google Scholar
Dulvy, N. K. et al. Extinction risk and conservation of the world’ s sharks and rays. Elife 3, 1–35 (2014).
Google Scholar
FAO. The State of World Fisheries and Aquaculture. Sustainability in action. Rome https://doi.org/10.4060/ca9229en (2020).
Smith, H. et al. Ecology and the science of small-scale fisheries: A synthetic review of research effort for the Anthropocene. Biol. Conserv. 254, 108895 (2021).
Google Scholar
Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).
Google Scholar
Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572, 461–466 (2019).
Google Scholar
Leurs, G. et al. Industrial fishing near West African marine protected areas and its potential effects on mobile marine predators. Fron. Mar. Sci. 8, 1–13 (2021).
Google Scholar
White, W. T. et al. Shark longline fishery of Papua New Guinea: Size and species composition and spatial variation of the catches. Mar. Freshw. Res. 71, 662–669 (2020).
Google Scholar
Jacquet, J. & Pauly, D. Funding priorities: Big barriers to small-scale fisheries. Conserv. Biol. 22, 832–835 (2008).
Google Scholar
Moore, J. E. et al. An interview-based approach to assess marine mammal and sea turtle captures in artisanal fisheries. Biol. Conserv. 143, 795–805 (2010).
Google Scholar
Soykan, C. U. et al. Why study bycatch? An introduction to the Theme Section on fisheries bycatch. Endanger. Species Res. 5, 91–102 (2008).
Google Scholar
Haque, A. B. et al. Socio-ecological approach on the fishing and trade of rhino rays (Elasmobranchii: Rhinopristiformes) for their biological conservation in the Bay of Bengal, Bangladesh. Ocean Coast. Manag. 210, 105690 (2021).
Google Scholar
Barausse, A. et al. The role of fisheries and the environment in driving the decline of elasmobranchs in the nor-thern Adriatic Sea. ICES J. Mar. Sci. 71, 1593–1603 (2014).
Google Scholar
Pérez-Jiménez, J. C. & Mendez-Loeza, I. The small-scale shark fisheries in the southern Gulf of Mexico: Understanding their heterogeneity to improve their management. Fish. Res. 172, 96–104 (2015).
Google Scholar
Saidi, B., Enajjar, S. & Bradai, M. N. Elasmobranch captures in shrimps trammel net fishery off the Gulf of Gabès (Southern Tunisia, Mediterranean Sea). J. Appl. Ichthyol. 32, 421–426 (2016).
Google Scholar
Vögler, R., González, C. & Segura, A. M. Spatio-temporal dynamics of the fish community associated with artisanal fisheries activities within a key marine protected area of the Southwest Atlantic (Uruguay). Ocean Coast. Manag. 190, 105175 (2020).
Dulvy, N. K. et al. Challenges and priorities in Shark and Ray conservation. Curr. Biol. 27, R565–R572 (2017).
Google Scholar
Davidson, L. N. K. & Dulvy, N. K. Global marine protected areas to prevent extinctions. Nat. Ecol. Evol. 1, 1–6 (2017).
Google Scholar
Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).
Google Scholar
Giakoumi, S. et al. Ecological effects of full and partial protection in the crowded Mediterranean Sea: A regional meta-analysis. Sci. Rep. 7, 1–12 (2017).
Google Scholar
Grorud-Colvert, K. et al. The MPA Guide: A framework to achieve global goals for the ocean. Science 373, 6560 (2021).
Google Scholar
Di Franco, A. et al. Five key attributes can increase marine protected areas performance for small-scale fisheries management. Sci. Rep. 6, 38135 (2016).
Google Scholar
Ban, N. C., Kushneryk, K., Falk, J., Vachon, A. & Sleigh, L. Improving compliance of recreational fishers with Rockfish Conservation Areas: community–academic partnership to achieve and evaluate conservation. ICES J. Mar. Sci. 77, 2308–2318 (2019).
Di Lorenzo, M., Guidetti, P., Di Franco, A., Calò, A. & Claudet, J. Assessing spillover from marine protected areas and its drivers: A meta-analytical approach. Fish Fish. 15, 1–10 (2020).
Belharet, M. et al. Extending full protection inside existing marine protected areas, or reducing fishing effort outside, can reconcile conservation and fisheries goals. J. Appl. Ecol. 57, 1948–1957 (2020).
Google Scholar
McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 247–254 (2015).
Google Scholar
Di Franco, A. et al. Linking home ranges to protected area size: The case study of the Mediterranean Sea. Biol. Conserv. 221, 175–181 (2018).
MacKeracher, T., Diedrich, A. & Simpfendorfer, C. A. Sharks, rays and marine protected areas: A critical evaluation of current perspectives. Fish Fish 20, 255–267 (2019).
Google Scholar
Ward-Paige, C. A., Keith, D. M., Worm, B. & Lotze, H. K. Recovery potential and conservation options for elasmobranchs. J. Fish. Biol. 80, 1844–1869 (2012).
Google Scholar
Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. MEPS 384, 33–46 (2009).
Google Scholar
O’Leary, B. C. et al. Addressing criticisms of large-scale marine protected areas. Bioscience 68, 359–370 (2018).
Google Scholar
Collins, C. et al. Understanding persistent non-compliance in a remote, large-scale marine protected area. Front. Mar. Sci. 8, 1–13 (2021).
Google Scholar
White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).
Google Scholar
Speed, C. W., Cappo, M. & Meekan, M. G. Evidence for rapid recovery of shark populations within a coral reef marine protected area. Biol. Conserv. 220, 308–319 (2018).
Google Scholar
Escalle, L. et al. Restricted movements and mangrove dependency of the nervous shark Carcharhinus cautus in nearshore coastal waters. J. Fish. Biol. 87, 323–341 (2015).
Google Scholar
O’Leary, B. C. et al. Effective coverage targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).
Google Scholar
Guidetti, P., Danovaro, R., Bottaro, M. & Ciccolella, A. Marine protected areas and endangered shark conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 2671–2672 (2021).
Google Scholar
Lubchenco, J. & Grorud-Colvert, K. Making waves: The science and politics of ocean protection. Science 350, 382–383 (2015).
Google Scholar
Zupan, M. et al. Marine partially protected areas: drivers of ecological effectiveness. Front. Ecol. Environ. 16, 381–387 (2018).
Google Scholar
Dulvy, N. K., Allen, D. J., Ralph, G. M. & Walls, R. H. L. The Conservation Status of Sharks, Rays, and Chimaeras in the Mediterranean Sea. IUCN, Malaga, Spain. pp. 236 (2016).
Morales-Muñiz, A. & Roselló, E. 20,000 years of fishing in the Strait: archaeological fish and shellfish assemblages from southern Iberia. In Human Impacts on Ancient Marine Ecysosytems: a Global Perspective (eds Torben, R. C. & Erlandson, J. M.), pp. 243–278 (University of California Press, Berkeley, 2008).
Coll, M. et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5, e11842 (2010).
Google Scholar
Cashion, M. S., Bailly, N. & Pauly, D. Official catch data underrepresent shark and ray taxa caught in Mediterranean and Black Sea fisheries. Mar. Pol. 105, 1–9 (2019).
Google Scholar
Ferretti, F., Myers, R. A., Serena, F. & Lotze, H. K. Loss of large predatory sharks from the Mediterranean Sea. Conserv. Biol. 22, 952–964 (2008).
Google Scholar
Colloca, F., Enea, M., Ragonese, S. & Di Lorenzo, M. A century of fishery data documenting the collapse of smooth-hounds (Mustelus spp.) in the Mediterranean Sea. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 1145–1155 (2017).
Google Scholar
Colloca, F., Carrozzi, V., Simonetti, A. & Lorenzo, M. D. Using local ecological knowledge of fishers to reconstruct abundance trends of Elasmobranch populations in the Strait of Sicily. Front. Mar. Sci. 7, 1–8 (2020).
Google Scholar
FAO. The State of World Fisheries and Aquaculture.Contributing to food security and nutrition for all. Rome. pp 200 (2016).
Milazzo, M., Cattano, C., Al Mabruk, S. A. A. & Giovos, I. Mediterranean sharks and rays need action. Science 371, 355–356 (2021).
Google Scholar
Claudet, J., Loiseau, C., Sostres, M. & Zupan, M. Underprotected marine protected areas in a global biodiversity hotspot. One Earth 2, 380–384 (2020).
Google Scholar
Maynou, F. et al. Estimating trends of population decline in long-lived marine species in the Mediterranean Sea based on fishers’ perceptions. PLoS One 6, e21818 (2011).
Google Scholar
Serena, F. et al. Species diversity, taxonomy and distribution of Chondrichthyes in the Mediterranean and Black Sea. Eur. Zool. J. 87, 497–536 (2020).
Google Scholar
Morey, G., Moranta, J., Riera, F., Grau, A. M. & Morales-NIN, B. Elasmobranchs in trammel net fishery associated to marine reserves in the Balearic Islands (NW Mediterranean). Cybium 30, 125–132 (2006).
Temple, A. J. et al. Marine megafauna interactions with small-scale fisheries in the southwestern Indian Ocean: a review of status and challenges for research and management. Rev. Fish. Biol. Fish. 28, 89–115 (2018).
Google Scholar
Siskey, M. R., Shipley, O. N. & Frisk, M. G. Skating on thin ice: Identifying the need for species- specific data and defined migration ecology of Rajidae spp. Fish Fish 20, 286–302 (2019).
Google Scholar
Chapman, D. D., Feldheim, K. A., Papastamatiou, Y. P. & Hueter, R. E. There and back again: a review of residency and return migrations in Sharks, with implications for population structure and management. Ann. Rev. Mar. Sci. 7, 547–570 (2015).
Google Scholar
Heupel, M. R., Carlson, J. K. & Simpfendorfer, C. A. Shark nursery areas: Concepts, definition, characterization and assumptions. Mar. Ecol. Prog. Ser. 337, 287–297 (2007).
Google Scholar
Speed, C., Field, I., Meekan, M. & Bradshaw, C. Complexities of coastal shark movements and their implications for management. Mar. Ecol. Prog. Ser. 408, 275–293 (2010).
Google Scholar
Knip, D. M., Heupel, M. R. & Simpfendorfer, C. A. Mortality rates for two shark species occupying a shared coastal environment. Fish. Res. 125–126, 184–189 (2012).
Google Scholar
Espinoza, M., Farrugia, T. J. & Lowe, C. G. Habitat use, movements and site fidelity of the gray smooth-hound shark (Mustelus californicus Gill 1863) in a newly restored southern California estuary. J. Exp. Mar. Bio. Ecol. 401, 63–74 (2011).
Google Scholar
Myers, R. A. & Mertz, G. The limits of exploitation: A precautionary approach. Ecol. Appl. 8, 165–169 (1998).
Google Scholar
Ferretti, F., Osio, G., Jenkins, C., Rosenberg, A. A. & Lotze, H. K. Long-term change in a meso-predator community in response to prolonged and heterogeneous human impact. Sci. Rep. 3, 1057 (2013).
Google Scholar
Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).
Google Scholar
Di Lorenzo, M. et al. Ontogenetic trophic segregation between two threatened smooth ‑ hound sharks in the Central Mediterranean Sea. Sci. Rep. 10, 1–15 (2020).
Google Scholar
Mulas, A. et al. Resource partitioning among sympatric elasmobranchs in the central-western Mediterranean continental shelf. Mar. Biol. 166, 1–16 (2019).
Google Scholar
Silva, P. M., Teixeira, C. M., Pita, C., Cabral, H. N. & França, S. Portuguese artisanal fishers’ knowledge about Elasmobranchs—A case study. Front. Mar. Sci. 8, 1–9 (2021).
Cortés, E. & Brooks, E. N. Stock status and reference points for sharks using data-limited methods and life history. Fish Fish 19, 1110–1129 (2018).
Google Scholar
Prince, J. D. Gauntlet fisheries for elasmobranchs – The secret of sustainable shark fisheries. J. Northwest Atl. Fish. 37, 407–416 (2005).
Google Scholar
Booth, H., Squires, D. & Milner-Gulland, E. J. The neglected complexities of shark fisheries, and priorities for holistic risk-based management. Ocean Coast. Manag. 182, 104994 (2019).
Google Scholar
Juhel, J. B. et al. Reef accessibility impairs the protection of sharks. J. Appl. Ecol. 55, 673–683 (2018).
Google Scholar
Espinoza, M., Cappo, M., Heupel, M. R., Tobin, A. J. & Simpfendorfer, C. A. Quantifying shark distribution patterns and species-habitat associations: Implications of Marine Park zoning. PLoS One 9, e106885 (2014).
Google Scholar
Cattano, C., Turco, G., Di Lorenzo, M., Visconti, G. & Milazzo, M. Sandbar shark aggregation in the central Mediterranean Sea and potential effects of tourism. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 1420–1428 (2021).
Google Scholar
O’Connell, C. P., Stroud, E. M. & He, P. The emerging field of electrosensory and semiochemical shark repellents: Mechanisms of detection, overview of past studies, and future directions. Ocean Coast. Manag. 97, 2–11 (2014).
Google Scholar
Barbato, M. et al. The use of fishers’ Local Ecological Knowledge to reconstruct fish behavioural traits and fishers’ perception of conservation relevance of elasmobranchs in the Mediterranean Sea. Mediterr. Mar. Sci. 22, 603–622 (2021).
Google Scholar
Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).
Google Scholar
Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: A risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish Fish 21, 269–289 (2020).
Google Scholar
Sala, E. et al. Author correction: protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).
Google Scholar
Di Franco, A. et al. Improving marine protected area governance through collaboration and co-production. J. Environ. Manag. 269, 110757 (2020).
Google Scholar
Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with imageJ. Biophotonics Int 11, 36–41 (2004).
Froese, R., & Pauly, D. FishBase. https://www.fishbase.org (2021).
Micheli, F. et al. Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities. PLoS ONE 8, e79889 (2013).
Google Scholar
Atwood, T. B. et al. Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Sci. Adv. 6, eabb8458 (2020).
Google Scholar
Munstermann, M. J. et al. A global ecological signal of extinction risk in terrestrial vertebrates. Cons. Biol. 36, 1–13 (2021).
Martin, T. G., Wintle, A., Rhodes, J. R., Field, A. & Low-choy, S. J. REVIEWS AND Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol. Lett. 8, 1235–1246 (2005).
Google Scholar
Rigby, R. A., Stasinopoulos, D. M. & Lane, P. W. Generalized additive models for location, scale and shape. J. R. Stat. Soc. Ser. C. Appl. Stat. 54, 507–554 (2005).
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org (2016).
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
Google Scholar
Akaike, H. A new look at the Statistical Model Identification. IEEE Trans. Autom. Contr. 19, 716–723 (1974).
Google Scholar
Kariya, T. Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to The Annals of Statistics. Ann. Stat. 19, 1403–1433, www.jstor.org (1991). ®.
Stasinopoulos, D. M. & Rigby, R. A. Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw. 23, 1–46 (2007).
Google Scholar
Van Buuren, S. & Fredriks, M. Worm plot: A simple diagnostic device for modelling growth reference curves. Stat. Med. 20, 1259–1277 (2001).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2020).
Legendre, P. & Legendre, L. Numerical ecology, 2nd English edn. Elsevier, Amsterdam (1998).
Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).
Google Scholar
Oksanen, A. J. et al. Vegan: Community Ecology Package. R package Version 2.0-2 (2011). Available at: http://cran.r-project.org/. (2012).
Di Lorenzo et al. Dataset1: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318878.v1 (2022).
Di Lorenzo et al. Dataset2: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318881.v3 (2022).
Di Lorenzo et al. Dataset3: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare. https://doi.org/10.6084/m9.figshare.18318884.v1 (2022).
Di Lorenzo et al. Dataset4: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare. https://doi.org/10.6084/m9.figshare.18318887.v1 (2022).
Di Lorenzo et al. Code1: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318875.v2 (2022).
Di Lorenzo et al. Code2: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318890.v1 (2022).
Di Lorenzo et al. Code3: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318893.v1 (2022).
Source: Ecology - nature.com