Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050. The 2012 Revision (FAO, 2012).
Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).
Google Scholar
Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
Google Scholar
Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).
Google Scholar
Fan, M. S. et al. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 63, 13–24 (2012).
Google Scholar
Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).
Google Scholar
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
Google Scholar
Porter, J. R. et al. Food Security and Food Production Systems (Cambridge Univ. Press, 2014).
Ray, D. K. & Foley, J. A. Increasing global crop harvest frequency: recent trends and future directions. Environ. Res. Lett. 8, 044041 (2013).
Google Scholar
Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 7, 5875–5895 (2015).
Google Scholar
Wall, D. & Six, J. Give soils their due. Science 347, 695 (2015).
Google Scholar
Ray, D. K. et al. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).
Google Scholar
Battisti, D. S. & Naylor, R. L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323, 240–244 (2009).
Google Scholar
Nelson, G. C. et al. Climate Change: Impact on Agriculture and Costs of Adaptation (International Food Policy Research Institute, 2009).
Challinor, A. J., Koehler, A. K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).
Google Scholar
Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).
Google Scholar
Schlenker, W., Hanemann, M. & Fisher, A. Will US agriculture really benefit from global warming? Accounting for irrigation in the hedonic approach. Am. Econ. Rev. 95, 395–406 (2005).
Google Scholar
Piao, S. L. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010).
Google Scholar
Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148 (2019).
Google Scholar
Ramankutty, N. et al. The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Glob. Ecol. Biogeogr. 11, 377–392 (2002).
Google Scholar
Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).
Google Scholar
Lobell, D. B. & Burke, M. B. On the use of statistical models to predict crop yield responses to climate change. Agr. For. Meteorol. 150, 1443–1452 (2010).
Google Scholar
Auffhammer, M. & Schlenker, W. Empirical studies on agricultural impacts and adaptation. Energy Econ. 46, 555–561 (2014).
Google Scholar
Folberth, C. et al. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nat. Commun. 7, 11872 (2016).
Google Scholar
Asseng, S. et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change 3, 827–832 (2013).
Google Scholar
Basso, B. et al. Soil organic carbon and nitrogen feedbacks on crop yields under climate change. Agr. Environ. Lett. 3, 180026 (2018).
Mϋller, C. et al. Implication of climate mitigation for future agricultural production. Environ. Res. Lett. 10, 125004 (2015).
Google Scholar
IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H. O. et al.) (Cambridge Univ. Press, 2022).
Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).
Google Scholar
Cui, Z. L. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–368 (2018).
Google Scholar
Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 3632 (2018).
Google Scholar
Müller, C. et al. Global Gridded Crop Model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 10, 1403–1422 (2017).
Jamieson, P. D., Porter, J. R. & Wilson, D. R. A test of the computer simulation model ARC-WHEAT on wheat crops grown in New Zealand. Field Crops Res. 27, 337–350 (1991).
Google Scholar
Warszawski, L. et al. The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).
Google Scholar
Xiong, W. et al. The Impacts of Climate Change on Chinese Agriculture—Phase II National Level Study Final Report (AEA Group, 2008).
Liu, B. et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 6, 1130–1136 (2016).
Google Scholar
Tao, F. et al. Global warming, rice production, and water use in China: developing a probabilistic assessment. Agr. For. Meteorol. 148, 94–110 (2008).
Google Scholar
Xiong, W. et al. Different uncertainty distribution between high and low latitudes in modelling warming impacts on wheat. Nat. Food 1, 63–69 (2020).
Google Scholar
Fernandez-Illescas, C. P., Porporato, A., Laio, F. & Rodriguez-Iturbe, I. The ecohydrological role of soil texture in a water-limited ecosystem. Water Resour. Res. 37, 2863–2872 (2001).
Google Scholar
Wang, E. L. et al. Capacity of soils to buffer impact of climate variability and value of seasonal forecasts. Agr. For. Meteorol. 149, 38–50 (2009).
Google Scholar
Vereecken, H. et al. Modeling soil processes: review, key challenges, and new perspectives. Vadose Zone J. 15, 1–57 (2016).
Myers, R. J. K. et al. in The Biological Management of Tropical Soil Fertility (eds Woomer, P.I. & Swift, M.J.) Ch. 4 (Wiley, 1994).
Smith, P. & Gregory, P. J. Climate change and sustainable food production. P. Nutr. Soc. 72, 21–28 (2013).
Google Scholar
Khasawneh, F. E., Sample, E. C. & Kamprath, E. J. The Role of Phosphorus in Agriculture (American Society of Agronomy, 1980).
FAOSTAT (Statistics Division of the Food and Agriculture Organization of the United Nations, 2006); http://www.fao.org/faostat/en/#home
Fan, M. S. et al. Plant-based assessment of inherent soil productivity and contributions to China’s cereal crop yield increase since 1980. PLoS ONE 8, e74617 (2013).
Google Scholar
Liu, X. & Chen, F. Farming System in China (China Agriculture Press, 2005).
Chen, X. P. in Fertilization Technology Highlights, (ed. Zhang, F. S) Ch. 6 (Chinese Agricultural Univ. Press, 2006).
Zhang, F. et al. Integrated nutrient management for food security and environmental quality in China. Adv. Agron. 116, 1–40 (2012).
Google Scholar
Bünemann, E. K. et al. Soil quality—a critical review. Soil Biol. Biochem. 120, 105–125 (2018).
Google Scholar
National Soil Survey Office. Chinese Soil (China Agriculture Press, 1998) .
Jiang, R. F. & Cui, J. Y. in Fertilization Technology Highlights, (ed. Zhang, F. S.) Ch. 5 (China Agricultural Univ. Press, 2006).
Cramer, W. P. & Solomon, A. M. Climatic classification and future global redistribution of agricultural land. Clim. Res. 3, 97–110 (1993).
Google Scholar
Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
Google Scholar
Friedman, J. H. Stochastic gradient boosting. Comput. Stat. Data 38, 367–378 (2002).
Google Scholar
Buston, P. M. & Elith, J. Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis. J. Anim. Ecol. 80, 528–538 (2011).
Google Scholar
Friedman, J. H. & Meulman, J. J. Multiple additive regression trees with application in epidemiology. Stat. Med. 22, 1365–1381 (2003).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
Kuhn, M. & Johnson, K. Applied Predictive Modeling (Springer, 2013).
Yang, J. M., Yang, J. Y., Liu, S. & Hoogenboom, G. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agric. Syst. 127, 81–89 (2014).
Google Scholar
Loague, K. & Green, R. E. Statistical and graphical methods for evaluating solute transport models: overview and application. J. Contamin. Hydro. 7, 51–73 (1991).
Google Scholar
Akinremi, O. O. et al. Evaluation of LEACHMN under Dryland conditions. I. Simulation of water and solute transport. Can. J. Soil Sci. 85, 223–232 (2005).
Google Scholar
Palosuo, T. et al. Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. Eur. J. Agron. 35, 103–114 (2011).
Google Scholar
Deng, N. et al. Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 10, 1725 (2019).
Google Scholar
Correndo, A. A. et al. Assessing the uncertainty of maize yield without nitrogen fertilization. Field Crops Res. 260, 107985 (2021).
Google Scholar
Rattalino Edreira, J. I. et al. Spatial frameworks for robust estimation of yield gaps. Nat. Food 2, 773–779 (2021).
Google Scholar
Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).
Google Scholar
Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).
Google Scholar
IPCC Climate Change 2014: Climate Change: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).
van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).
Google Scholar
Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction—the ISI-MIP approach. Earth Syst. Dynam. 4, 219–236 (2013).
Google Scholar
Chen, H., Sun, J., Lin, W. & Xu, H. Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Sci. Bull. 65, 1415–1418 (2020).
Google Scholar
China Agriculture Yearbook (China Agriculture Press, 2005).
Source: Ecology - nature.com