in

Soil quality both increases crop production and improves resilience to climate change

  • Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050. The 2012 Revision (FAO, 2012).

  • Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    CAS 
    Article 

    Google Scholar 

  • Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    CAS 
    Article 

    Google Scholar 

  • Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).

    CAS 
    Article 

    Google Scholar 

  • Fan, M. S. et al. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 63, 13–24 (2012).

    CAS 
    Article 

    Google Scholar 

  • Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    CAS 
    Article 

    Google Scholar 

  • Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    CAS 
    Article 

    Google Scholar 

  • Porter, J. R. et al. Food Security and Food Production Systems (Cambridge Univ. Press, 2014).

  • Ray, D. K. & Foley, J. A. Increasing global crop harvest frequency: recent trends and future directions. Environ. Res. Lett. 8, 044041 (2013).

    Article 

    Google Scholar 

  • Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 7, 5875–5895 (2015).

    Article 

    Google Scholar 

  • Wall, D. & Six, J. Give soils their due. Science 347, 695 (2015).

    CAS 
    Article 

    Google Scholar 

  • Ray, D. K. et al. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).

    CAS 
    Article 

    Google Scholar 

  • Battisti, D. S. & Naylor, R. L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323, 240–244 (2009).

    CAS 
    Article 

    Google Scholar 

  • Nelson, G. C. et al. Climate Change: Impact on Agriculture and Costs of Adaptation (International Food Policy Research Institute, 2009).

  • Challinor, A. J., Koehler, A. K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).

    Article 

    Google Scholar 

  • Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).

    CAS 
    Article 

    Google Scholar 

  • Schlenker, W., Hanemann, M. & Fisher, A. Will US agriculture really benefit from global warming? Accounting for irrigation in the hedonic approach. Am. Econ. Rev. 95, 395–406 (2005).

    Article 

    Google Scholar 

  • Piao, S. L. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010).

    CAS 
    Article 

    Google Scholar 

  • Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148 (2019).

    CAS 
    Article 

    Google Scholar 

  • Ramankutty, N. et al. The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Glob. Ecol. Biogeogr. 11, 377–392 (2002).

    Article 

    Google Scholar 

  • Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    CAS 
    Article 

    Google Scholar 

  • Lobell, D. B. & Burke, M. B. On the use of statistical models to predict crop yield responses to climate change. Agr. For. Meteorol. 150, 1443–1452 (2010).

    Article 

    Google Scholar 

  • Auffhammer, M. & Schlenker, W. Empirical studies on agricultural impacts and adaptation. Energy Econ. 46, 555–561 (2014).

    Article 

    Google Scholar 

  • Folberth, C. et al. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nat. Commun. 7, 11872 (2016).

    CAS 
    Article 

    Google Scholar 

  • Asseng, S. et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change 3, 827–832 (2013).

    CAS 
    Article 

    Google Scholar 

  • Basso, B. et al. Soil organic carbon and nitrogen feedbacks on crop yields under climate change. Agr. Environ. Lett. 3, 180026 (2018).

  • Mϋller, C. et al. Implication of climate mitigation for future agricultural production. Environ. Res. Lett. 10, 125004 (2015).

    Article 

    Google Scholar 

  • IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H. O. et al.) (Cambridge Univ. Press, 2022).

  • Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).

    CAS 
    Article 

    Google Scholar 

  • Cui, Z. L. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–368 (2018).

    CAS 
    Article 

    Google Scholar 

  • Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 3632 (2018).

    Article 
    CAS 

    Google Scholar 

  • Müller, C. et al. Global Gridded Crop Model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 10, 1403–1422 (2017).

  • Jamieson, P. D., Porter, J. R. & Wilson, D. R. A test of the computer simulation model ARC-WHEAT on wheat crops grown in New Zealand. Field Crops Res. 27, 337–350 (1991).

    Article 

    Google Scholar 

  • Warszawski, L. et al. The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

    CAS 
    Article 

    Google Scholar 

  • Xiong, W. et al. The Impacts of Climate Change on Chinese Agriculture—Phase II National Level Study Final Report (AEA Group, 2008).

  • Liu, B. et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 6, 1130–1136 (2016).

    Article 

    Google Scholar 

  • Tao, F. et al. Global warming, rice production, and water use in China: developing a probabilistic assessment. Agr. For. Meteorol. 148, 94–110 (2008).

    Article 

    Google Scholar 

  • Xiong, W. et al. Different uncertainty distribution between high and low latitudes in modelling warming impacts on wheat. Nat. Food 1, 63–69 (2020).

    Article 

    Google Scholar 

  • Fernandez-Illescas, C. P., Porporato, A., Laio, F. & Rodriguez-Iturbe, I. The ecohydrological role of soil texture in a water-limited ecosystem. Water Resour. Res. 37, 2863–2872 (2001).

    Article 

    Google Scholar 

  • Wang, E. L. et al. Capacity of soils to buffer impact of climate variability and value of seasonal forecasts. Agr. For. Meteorol. 149, 38–50 (2009).

    Article 

    Google Scholar 

  • Vereecken, H. et al. Modeling soil processes: review, key challenges, and new perspectives. Vadose Zone J. 15, 1–57 (2016).

  • Myers, R. J. K. et al. in The Biological Management of Tropical Soil Fertility (eds Woomer, P.I. & Swift, M.J.) Ch. 4 (Wiley, 1994).

  • Smith, P. & Gregory, P. J. Climate change and sustainable food production. P. Nutr. Soc. 72, 21–28 (2013).

    Article 

    Google Scholar 

  • Khasawneh, F. E., Sample, E. C. & Kamprath, E. J. The Role of Phosphorus in Agriculture (American Society of Agronomy, 1980).

  • FAOSTAT (Statistics Division of the Food and Agriculture Organization of the United Nations, 2006); http://www.fao.org/faostat/en/#home

  • Fan, M. S. et al. Plant-based assessment of inherent soil productivity and contributions to China’s cereal crop yield increase since 1980. PLoS ONE 8, e74617 (2013).

    CAS 
    Article 

    Google Scholar 

  • Liu, X. & Chen, F. Farming System in China (China Agriculture Press, 2005).

  • Chen, X. P. in Fertilization Technology Highlights, (ed. Zhang, F. S) Ch. 6 (Chinese Agricultural Univ. Press, 2006).

  • Zhang, F. et al. Integrated nutrient management for food security and environmental quality in China. Adv. Agron. 116, 1–40 (2012).

    CAS 
    Article 

    Google Scholar 

  • Bünemann, E. K. et al. Soil quality—a critical review. Soil Biol. Biochem. 120, 105–125 (2018).

    Article 
    CAS 

    Google Scholar 

  • National Soil Survey Office. Chinese Soil (China Agriculture Press, 1998) .

  • Jiang, R. F. & Cui, J. Y. in Fertilization Technology Highlights, (ed. Zhang, F. S.) Ch. 5 (China Agricultural Univ. Press, 2006).

  • Cramer, W. P. & Solomon, A. M. Climatic classification and future global redistribution of agricultural land. Clim. Res. 3, 97–110 (1993).

    Article 

    Google Scholar 

  • Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS 
    Article 

    Google Scholar 

  • Friedman, J. H. Stochastic gradient boosting. Comput. Stat. Data 38, 367–378 (2002).

    Article 

    Google Scholar 

  • Buston, P. M. & Elith, J. Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis. J. Anim. Ecol. 80, 528–538 (2011).

    Article 

    Google Scholar 

  • Friedman, J. H. & Meulman, J. J. Multiple additive regression trees with application in epidemiology. Stat. Med. 22, 1365–1381 (2003).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • Kuhn, M. & Johnson, K. Applied Predictive Modeling (Springer, 2013).

  • Yang, J. M., Yang, J. Y., Liu, S. & Hoogenboom, G. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agric. Syst. 127, 81–89 (2014).

    Article 

    Google Scholar 

  • Loague, K. & Green, R. E. Statistical and graphical methods for evaluating solute transport models: overview and application. J. Contamin. Hydro. 7, 51–73 (1991).

    CAS 
    Article 

    Google Scholar 

  • Akinremi, O. O. et al. Evaluation of LEACHMN under Dryland conditions. I. Simulation of water and solute transport. Can. J. Soil Sci. 85, 223–232 (2005).

    Article 

    Google Scholar 

  • Palosuo, T. et al. Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. Eur. J. Agron. 35, 103–114 (2011).

    Article 

    Google Scholar 

  • Deng, N. et al. Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 10, 1725 (2019).

    Article 
    CAS 

    Google Scholar 

  • Correndo, A. A. et al. Assessing the uncertainty of maize yield without nitrogen fertilization. Field Crops Res. 260, 107985 (2021).

    Article 

    Google Scholar 

  • Rattalino Edreira, J. I. et al. Spatial frameworks for robust estimation of yield gaps. Nat. Food 2, 773–779 (2021).

    Article 

    Google Scholar 

  • Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    CAS 
    Article 

    Google Scholar 

  • Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article 

    Google Scholar 

  • IPCC Climate Change 2014: Climate Change: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  • van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).

    Article 

    Google Scholar 

  • Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction—the ISI-MIP approach. Earth Syst. Dynam. 4, 219–236 (2013).

    Article 

    Google Scholar 

  • Chen, H., Sun, J., Lin, W. & Xu, H. Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Sci. Bull. 65, 1415–1418 (2020).

    Article 

    Google Scholar 

  • China Agriculture Yearbook (China Agriculture Press, 2005).


  • Source: Ecology - nature.com

    Carbon impacts

    Comparative screening the life-time composition and crystallinity variation in gilthead seabream otoliths Sparus aurata from different marine environments