Lucas, S. G. Permian tetrapod extinction events. Earth Sci. Rev. 170, 31–60 (2017).
Rampino, M. R. & Shen, S.-Z. The end-Guadalupian (259.8 Ma) biodiversity crisis: the sixth major mass extinction? Hist. Biol. 33, 716–722 (2019).
Day, M. O. & Rubidge, B. S. The late capitanian mass extinction of terrestrial vertebrates in the Karoo Basin of South Africa. Front. Earth Sci. 9, 631198 (2021).
Bordy, E. M. & Paiva, F. Stratigraphic architecture of the karoo river channels at the end-capitanian. Front. Earth Sci. 8, 521766 (2021).
Erwin, D. H., Bowring, S. A. & Yugan, J. In Catastrophic events and mass extinctions: impacts and beyond (eds. Koeberl, C. & MacLeod, K. G.) 363–383 (Geological Society of America, 2002).
Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).
Google Scholar
Viglietti, P. A. et al. Evidence from South Africa for a protracted end-Permian extinction on land. Proc. Natl Acad. Sci. USA 118, e2017045118 (2021).
Google Scholar
Rubidge, B. S. Did mammals originate in Africa? South African fossils and the Russian connection. Syd. Haughton Meml. Lect. 4, 1–14 (1995).
Day, M. O. & Rubidge, B. S. A brief lithostratigraphic review of the Abrahamskraal and Koonap formations of the Beaufort Group, South Africa: towards a basin-wide stratigraphic scheme for the Middle Permian Karoo. J. Afr. Earth Sci. 100, 227–242 (2014).
Day, M., Ramezani, J., Frazer, R. & Rubidge, B. U-Pb zircon age constraints on the vertebrate assemblages and palaeomagnetic record of the Guadalupian Abrahamskraal Formation, Karoo Basin, South Africa. J. Afr. Earth Sci. 186, 104435 (2022).
Google Scholar
Koch, N. M., Garwood, R. & Parry, L. Fossils improve phylogenetic analyses of morphological characters. Proc. R. Soc. B Biol. Sci. 288, 1–8 (2021).
McLoughlin, S. Glossopteris: insights into the architecture and relationships of an iconic Permian Gondwanan plant. J. Bot. Soc. Bengal 65, 93–106 (2011).
Slater, B. J., McLoughlin, S. & Hilton, J. A high-latitude Gondwanan lagerstätte: the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica. Gondwana Res. 27, 1446–1473 (2015).
Plumstead, E. P. Three thousand million years of plant life in Africa. (Geological Society of South Africa, 1969).
Lacey, W. S., van Dijk, D. E. & Gordon-Gray, K. D. Fossil plants from the Upper Permian in the Mooi River district of Natal, South Africa. Ann. Natal. Mus. 22, 349–420 (1975).
Anderson, J. M. & Anderson, H. M. Palaeoflora of Southern Africa. Prodomus of South African megafloras. Devonian to Lower Cretaceous. (Balkema, 1985).
Bordy, E. M. & Prevec, R. Sedimentology, palaeontology and palaeo-environments of the Middle (?) to Upper Permian Emakwezini Formation (Karoo Supergroup, South Africa). South Afr. J. Geol. 111, 429–458 (2008).
Prevec, R. et al. Portrait of a Gondwanan ecosystem: a new late Permian fossil locality from KwaZulu-Natal, South Africa. Rev. Palaeobot. Palynol. 156, 454–493 (2009).
Mcloughlin, S. & Prevec, R. The architecture of Permian glossopterid ovuliferous reproductive organs. Alcheringa Australas. J. Palaeontol. 43, 480–510 (2019).
McLoughlin, S. & Prevec, R. The reproductive biology of glossopterid gymnosperms—a review. Rev. Palaeobot. Palynol. 295, 104527 (2021).
Riek, E. F. New Upper Permian insects from Natal, South Africa. Ann. Natal. Mus. 22, 755–789 (1976).
Riek, E. F. Fossil insects from the Middle Ecca (Lower Permian) of southern Africa. Palaeontol. Afr. 19, 145–148 (1976).
Riek, E. F. An entomobryid collembolan (Hexapoda: Collembola) from the Lower Permian of Southern Africa. Palaeontol. Afr. 19, 141–143 (1976).
McLachlan, I. R. & Anderson, A. M. Fossil insect wings from the Early Permian White Band Formation, South Africa. Palaeontol. Afr. 20, 83–86 (1977).
Pinto, I. D. & Pinto De Ornellas, L. New fossil insects from the White Band Formation (Permian), South Africa. Pesqui. Zool. 10, 96–104 (1978).
van Dijk, D. E. & Geertsema, H. Permian insects from the Beaufort Group of Natal, South Africa. Ann. Natal. Mus. 40, 137–171 (1999).
Geertsema, H., van Dijk, D. E. & van den Heever, A. J. Palaeozoic insects of southern Africa: a review. Palaeontol. Afr. 38, 19–25 (2002).
Rubidge, B. S., Erwin, D. H., Ramezani, J., Bowring, S. A. & de Klerk, W. J. High-precision temporal calibration of Late Permian vertebrate biostratigraphy: U-Pb zircon constraints from the Karoo Supergroup, South Africa. Geology 41, 363–366 (2013).
Google Scholar
Mcloughlin, S., Prevec, R. & Slater, B. J. Arthropod interactions with the Permian Glossopteris flora. J. Palaeosciences 70, 43–133 (2021).
Shcherbakov, D. E. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontol. J. 42, 15–31 (2008).
Nel, A. et al. The earliest known holometabolous insects. Nature 503, 257–261 (2013).
Google Scholar
Nicholson, D. B., Mayhew, P. J. & Ross, A. J. Changes to the fossil record of insects through fifteen years of discovery. PLoS ONE 10, 1421–1435 (2015).
Glenister, B. F., Wardlaw, B. R., Lambert, L. L., Spinosa, C. & Bowring, S. A. Proposal of Guadalupian and component Roadian. Wordian Capitanian Stages Int. Stand. middle Permian Ser. Permophiles 34, 3–11 (1999).
Allison, P. A. Konservat-Lagerstätten: cause and classification. Paleobiology 14, 331–344 (1988).
Grimaldi, D. & Engel, M. S. Evolution of the Insects. (Cambridge University Press, 2005).
Tian, Q. et al. Experimental investigation of insect deposition in lentic environments and implications for formation of Konservat Lagerstätten. Palaeontology 63, 565–578 (2020).
McCurry, M. R. et al. A Lagerstätte from Australia provides insight into the nature of Miocene mesic ecosystems. Sci. Adv. 8, 1–11 (2022).
Beckemeyer, R. J. & Hall, J. D. The entomofauna of the Lower Permian fossil insect beds of Kansas and Oklahoma, USA. Afr. Invertebr. 48, 17 (2007).
Jell, P. A. The fossil insects of Australia. Mem. Qld. Mus. 50, 1–124 (2004).
Wickens, H., de, V. & Cole, D. I. Lithostratigraphy of the Skoorsteenberg Formation (Ecca Group, Karoo Supergroup), South Africa. South Afr. J. Geol. 120, 433–446 (2017).
Rubidge, B. S., Hancox, P. J. & Catuneaunu, O. Sequence analysis of the Ecca–Beaufort contact in the southern Karoo of South Africa. South Afr. J. Geol. 103, 81–96 (2000).
Lanci, L., Tohver, E., Wilson, A. & Flint, S. Upper Permian magnetic stratigraphy of the lower Beaufort Group, Karoo Basin. Earth Planet. Sci. Lett. 375, 123–134 (2013).
Google Scholar
Belica, M. E. et al. Refining the chronostratigraphy of the Karoo Basin, South Africa: magnetostratigraphic constraints support an early Permian age for the Ecca Group. Geophys. J. Int. 211, 1354–1374 (2017).
Google Scholar
Rubidge, B. S. & Day, M. O. Biostratigraphy of the Eodicynodon Assemblage Zone (Beaufort Group, Karoo Supergroup), South Africa. South Afr. J. Geol. 123, 141–148 (2020).
Nel, A., Garrouste, R. & Prevec, R. The first Permian Gondwanan damselfly-like Protozygoptera (Insecta, Odonatoptera). Hist. Biol. https://doi.org/10.1080/08912963.2022.2067996 (2022).
Cawood, R. et al. The first ‘Grylloblattida’ of the family Liomopteridae from the Middle Permian in the Onder Karoo, South Africa (Insecta: Polyneoptera). Comptes Rendus Palevol. https://doi.org/10.5852/cr-palevol2022v21a22 (2022).
Surange, K. R. & Chandra, S. Morphology of the gymnospermous fructifications of the Glossopteris flora and their relationships. Palaeontogr. B 149, 153–180 (1975).
White, M. E. Reproductive structures of the Glossopteridales in the plant fossil collection of the Australian Museum. Rec. Aust. Mus. 31, 473–504 (1978).
Nishida, H., Pigg, K. B. & DeVore, M. L. In Transformative Paleobotany, Ch. 8 (eds. Krings, M., Harper, C. J., Cúneo, N. R. & Rothwell, G. W.) 145–154 (Academic Press, 2018).
McLoughlin, S. New records of Bergiopteris and glossopterid fructifications from the Permian of Western Australia and Queensland. Alcheringa Australas. J. Palaeontol. 19, 175–192 (1995).
McLoughlin, S. In Gondwana Eight (eds. Findlay, R. H., Unrug, R., Banks, M. R. & Veevers, J. J.) 253–264 (Balkema, 1993).
Nishida, H., Pigg, K. B., Kudo, K. & Rigby, J. F. New evidence of the reproductive organs of Glossopteris based on permineralized fossils from Queensland, Australia. II: pollen-bearing organ Ediea gen. nov. J. Plant Res. 127, 233–240 (2014).
Google Scholar
Tomescu, A. M. F., Bomfleur, B., Bippus, A. C. & Savoretti, A. In Transformative Paleobotany (eds. Krings, M., Harper, C. J., Cuneo, N. R. & Rothwell, G. W.) 375–416 (Elsevier Academic Press, 2018).
Bomfleur, B. et al. Diverse bryophyte mesofossils from the Triassic of Antarctica. Lethaia 47, 120–132 (2014).
Nel, A., Bechly, G., Prokop, J., Béthoux, O. & Fleck, G. Systematics and evolution of Paleozoic and Mesozoic damselfly-like Odonatoptera of the ‘protozygopteran’ grade. J. Paleontol. 86, 81–104 (2012).
Riek, E. F. Fossil insects from the Upper Permian of Natal, South Africa. Ann. Natal. Mus. 21, 513–532 (1973).
Gallego, O. F. et al. The most ancient Platyperlidae (Insecta, Perlida= Plecoptera) from early Late Triassic deposits in southern South America. Ameghiniana 48, 447–461 (2011).
Martins-Neto, R. G., Gallego, O. F. & Melchor, R. N. The Triassic insect fauna from South America (Argentina, Brazil and Chile): a checklist (except Blattoptera and Coleoptera) and descriptions of new taxa. Acta Zool. Cracoviensia 46, 229–256 (2003).
van Dijk, D. E. & Geertsema, H. A new genus of Permian Plecoptera (Afroperla) from KwaZulu-Natal, South Africa. Palaeontogr. B 12, 268–270 (2004).
Béthoux, O., Cui, Y., Kondratieff, B., Stark, B. & Ren, D. At last, a Pennsylvanian stem-stonefly (Plecoptera) discovered. BMC Evol. Biol. 11, 248 (2011).
Google Scholar
Schubnel, T., Perdu, L., Roques, P., Garrouste, R. & Nel, A. Two new stem-stoneflies discovered in the Pennsylvanian Avion locality, Pas-de-Calais, France (Insecta: ‘Exopterygota’). Alcheringa Australas. J. Palaeontol. 43, 1–6 (2019).
Sharov, A. G. In Fundamentals of Paleontology: Arthropoda, Tracheata, Chelicerata. (eds. Rohdendorf, B. B. & Davis, D. R.) vol. 9 173–179 (Smithsonian Institution Libraries and NSCF, 1991).
Sinitshenkova, N. D. In History of insects. (eds. Rasnitsyn, A. P. & Quicke, D. L. J.) Ch. 3.3, 388–426 (Kluwer Academic Publishers, 2002).
Hayes, P. A. & Collinson, M. E. The Flora of the insect limestone (latest Eocene) from the Isle of Wight, southern England. Earth Environ. Sci. Trans. R. Soc. Edinb. 104, 245–261 (2014).
Zhang, Q. et al. Mayflies as resource pulses in Jurassic lacustrine ecosystems. Geology 50, 1043–1047 (2022).
Google Scholar
Prokop, J. et al. Ecomorphological diversification of the Late Palaeozoic Palaeodictyopterida reveals different larval strategies and amphibious lifestyle in adults. R. Soc. Open Sci. 6, 190460 (2019).
Google Scholar
Prokop, J., Nel, A., Engel, M. S., Pecharová, M. & Hörnschemeyer, T. New Carboniferous fossils of Spilapteridae enlighten postembryonic wing development in Palaeodictyoptera. Syst. Entomol. 41, 178–190 (2016).
Dos Santos, T. B., de Souza Pinheiro, E. R. & Iannuzzi, R. First evidence of seed predation by arthropods from Gondwana and its early Paleozoic history (Rio Bonito Formation, Paraná Basin, Brazil). PALAIOS 35, 292–301 (2020).
Nel, A., Garrouste, R. & Prokop, J. The first African Anthracoptilidae (Insecta: Paoliida) near the Permian—Triassic boundary in Kenya. Zootaxa 3925, 145 (2015).
Google Scholar
Riek, E. F. An unusual immature insect from the Upper Permian of Natal. Ann. Natal. Mus. 22, 271–274 (1974).
Dunlop, J. A., Penney, D., Tetlie, O. E. & Anderson, L. I. How many species of fossil arachnids are there? J. Arachnol. 36, 267–272 (2008).
Rasnitsyn, A. P. et al. Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins). Cretac. Res. 61, 234–255 (2016).
Manum, S. B., Bose, M. N. & Sawyer, R. T. Clitellate cocoons in freshwater deposits since the Triassic. Zool. Scr. 20, 347–366 (1991).
Struck, T. H. et al. Phylogenomic analyses unravel annelid evolution. Nature 471, 95–98 (2011).
Google Scholar
Parry, L., Tanner, A. & Vinther, J. The origin of annelids. Palaeontology 57, 1091–1103 (2014).
Mikulic, D. G., Briggs, D. E. G. & Kluessendorf, J. A Silurian soft-bodied biota. Science 228, 715–717 (1985).
Google Scholar
Prokop, J., Szwedo, J., Lapeyrie, J., Garrouste, R. & Nel, A. New Middle Permian insects from Salagou Formation of the Lodève Basin in southern France (Insecta: Pterygota). Ann. Soci.été Entomol. Fr. NS 51, 14–51 (2015).
Cai, C. et al. Integrated phylogenomics and fossil data illuminate the evolution of beetles. R. Soc. Open Sci. 9, 211771 (2022).
Google Scholar
Srivastava, A. K. & Agnihotri, D. Dilemma of late Palaeozoic mixed floras in Gondwana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 298, 54–69 (2010).
Raff, R. A. Written in stone: fossils, genes and evo–devo. Nat. Rev. Genet. 8, 911–920 (2007).
Google Scholar
Cunningham, J. A., Liu, A. G., Bengtson, S. & Donoghue, P. C. J. The origin of animals: can molecular clocks and the fossil record be reconciled? BioEssays 39, 1–12 (2017).
Google Scholar
McCulloch, G. A., Wallis, G. P. & Waters, J. M. A time-calibrated phylogeny of southern hemisphere stoneflies: Testing for Gondwanan origins. Mol. Phylogenet. Evol. 96, 150–160 (2016).
Google Scholar
Cui, Y. et al. Rhythms of Insect Evolution. (John Wiley & Sons, Ltd, 2019).
Letsch, H. et al. Combining molecular datasets with strongly heterogeneous taxon coverage enlightens the peculiar biogeographic history of stoneflies (Insecta: Plecoptera). Syst. Entomol. 46, 952–967 (2021).
Raja, N. B. et al. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat. Ecol. Evol. 6, 145–154 (2022).
Google Scholar
Beattie, R. The geological setting and palaeoenvironmental and palaeoecological reconstructions of the Upper Permian insect beds at Belmont, New South Wales, Australia. Afr. Invertebr. 48, 18 (2007).
Bernardi, M. et al. Late Permian (Lopingian) terrestrial ecosystems: a global comparison with new data from the low-latitude Bletterbach Biota. Earth Sci. Rev. 175, 18–43 (2017).
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211, 47–69 (2004).
Google Scholar
Sláma, J. et al. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).
Wiedenbeck, M. et al. Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostand. Newsl. 19, 1–23 (2007).
Horstwood, M. S. A. et al. Community‐derived standards for LA ‐ ICP ‐ MS U‐(Th‐)Pb geochronology—uncertainty propagation, age interpretation and data reporting. Geostand. Geoanal. Res. 40, 311–332 (2016).
Google Scholar
Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. Spectrom. 26, 2508–2518 (2011).
Google Scholar
Petrus, J. A. & Kamber, B. S. VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand. Geoanal. Res. 36, 247–280 (2012).
Google Scholar
Rees, P. Mc. A., Gibbs, M. T., Ziegler, A. M., Kutzbach, J. E. & Behling, P. J. Permian climates: evaluating model predictions using global paleobotanical data. Geology 27, 891 (1999).
Walter, H. Vegetation of the Earth and ecological systems of the geo-biosphere. (Springer-Verlag, 1985).
Lucas, S. G., Schneider, J. W. & Cassinis, G. Non-marine Permian biostratigraphy and biochronology: an introduction. Geol. Soc. Lond. Spec. Publ. 265, 1–14 (2006).
Scotese, C. In Atlas of Permo-Triassic Paleogeographic Maps (Mollweide Projection), Maps 43–52, Volumes 3 & 4 of the PALEOMAP Atlas for ArcGIS. (PALEOMAP Project, 2014).
Source: Ecology - nature.com