Turner, D. & Bateson, P. (eds) The Domestic Cat: The Biology of Its Behaviour (Cambridge Univ. Press, 2000).
Bradshaw, J. W. S., Goodwin, D., Legrand-Defrétin, V. & Nott, H. M. R. Food selection by the domestic cat, an obligate carnivore. Comp. Biochem. Physiol. A Physiol. 114, 205–209 (1996).
Google Scholar
Trouwborst, A., McCormack, P. C. & Martínez Camacho, E. Domestic cats and their impacts on biodiversity: A blind spot in the application of nature conservation law. People Nat. 2, 235–250 (2020).
Google Scholar
Crowley, S. L., Cecchetti, M. & McDonald, R. A. Our wild companions: Domestic cats in the anthropocene. Trends Ecol. Evol. 35, 477–483 (2020).
Google Scholar
Driscoll, C. A. et al. The Near Eastern origin of cat domestication. Science 317, 519–523 (2007).
Google Scholar
Van Neer, W., Linseele, V., Friedman, R. & De Cupere, B. More evidence for cat taming at the Predynastic elite cemetery of Hierakonpolis (Upper Egypt). J. Archaeol. Sci. 45, 103–111 (2014).
Google Scholar
Ottoni, C. et al. The palaeogenetics of cat dispersal in the ancient world. Nat. Ecol. Evol. 1, 0139 (2017).
Google Scholar
Baca, M. et al. Human-mediated dispersal of cats in the Neolithic Central Europe. Heredity 121, 557–563 (2018).
Google Scholar
Vigne, J. The beginning of cat domestication in East and West Asia. Doc. Archaeobiol. 15, 343–354 (2019).
Krajcarz, M. et al. Ancestors of domestic cats in Neolithic Central Europe: Isotopic evidence of a synanthropic diet. Proc. Natl. Acad. Sci. USA 117, 17710–17719 (2020).
Google Scholar
Piontek, A. M. et al. Analysis of cat diet across an urbanisation gradient. Urban Ecosyst. 24, 59–69 (2021).
Google Scholar
Medina, F. M. et al. A global review of the impacts of invasive cats on island endangered vertebrates. Glob. Chang. Biol. 17, 3503–3510 (2011).
Google Scholar
Moseby, K. E., Peacock, D. E. & Read, J. L. Catastrophic cat predation: A call for predator profiling in wildlife protection programs. Biol. Conserv. 191, 331–340 (2015).
Google Scholar
Loss, S. R., Will, T. & Marra, P. P. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. 4, 1396 (2013).
Google Scholar
Beaumont, M. et al. Genetic diversity and introgression in the Scottish wildcat. Mol. Ecol. 10, 319–336 (2001).
Google Scholar
Beugin, M. P. et al. Hybridization between Felis silvestris silvestris and Felis silvestris catus in two contrasted environments in France. Ecol. Evol. 10, 263–276 (2020).
Google Scholar
Biró, Z., Lanszki, J., Szemethy, L., Heltai, M. & Randi, E. Feeding habits of feral domestic cats (Felis catus), wild cats (Felis silvestris) and their hybrids: Trophic niche overlap among cat groups in Hungary. J. Zool. 266, 187–196 (2005).
Google Scholar
Széles, G. L., Purger, J. J., Molnár, T. & Lanszki, J. Comparative analysis of the diet of feral and house cats and wildcat in Europe. Mammal. Res. 63, 43–53 (2018).
Google Scholar
Ottoni, C. & Van Neer, W. The dispersal of the domestic cat paleogenetic and zooarcheological evidence. Near East. Archaeol. 83, 38–45 (2020).
Google Scholar
Bitz-Thorsen, J. & Gotfredsen, A. B. Domestic cats (Felis catus) in Denmark have increased significantly in size since the Viking Age. Danish J. Archaeol. 7, 241–254 (2018).
Google Scholar
Faure, E. & Kitchener, A. C. An archaeological and historical review of the relationships between felids and people. Anthrozoos 22, 221–238 (2009).
Google Scholar
von den Driesch, A. Kulturgeschichte der Hauskatze. In Krankheiten der Katze, Bd. 1 (eds Schmidt, V. & Horzinek, M. C.) 17–40 (Fischer, 1992).
Głażewska, I. & Kijewski, T. A new view on the European feline population from mtDNA analysis in Polish domestic cats. Forensic Sci. Int. Genet. 27, 116–122 (2017).
Google Scholar
Cucchi, T. et al. Tracking the Near Eastern origins and European dispersal of the western house mouse. Sci. Rep. 10, 8276 (2020).
Google Scholar
Van Klinken, G. J., Richards, M. P. & Hedges, B. E. M. An overview of causes for stable isotopic variations in past European human populations: environmental, ecophysiological, and cultural effects. In Biogeochemical Approaches to Paleodietary Analysis (eds Ambrose, S. & Katzenberg, M.) 39–63 (Kluwer Academic Publishers, 2002). https://doi.org/10.1007/0-306-47194-9_3.
Google Scholar
Drucker, D. G., Bridault, A., Hobson, K. A., Szuma, E. & Bocherens, H. Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 69–82 (2008).
Google Scholar
Koch, P. L. Isotopic study of the biology of modern and fossil vertebrates. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 99–154 (Blackwell Publishing Ltd, 2007). https://doi.org/10.1002/9780470691854.ch5.
Google Scholar
Hofman-Kamińska, E. et al. Foraging habitats and niche partitioning of European large herbivores during the holocene—Insights from 3D dental microwear texture analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 506, 183–195 (2018).
Google Scholar
Bocherens, H., Hofman-Kamińska, E., Drucker, D. G., Schmölcke, U. & Kowalczyk, R. European bison as a refugee species? Evidence from isotopic data on Early Holocene bison and other large herbivores in northern Europe. PLoS ONE 10, 1–19 (2015).
Google Scholar
Hu, Y. et al. Earliest evidence for commensal processes of cat domestication. Proc. Natl. Acad. Sci. USA. 111, 116–120 (2014).
Google Scholar
Haruda, A. F. et al. The earliest domestic cat on the Silk Road. Sci. Rep. 10, 11241 (2020).
Google Scholar
Meckstroth, A. M., Miles, A. K. & Chandra, S. Diets of introduced predators using stable isotopes and stomach contents. J. Wildl. Manag. 71, 2387–2392 (2007).
Google Scholar
McDonald, B. W. et al. High variability within pet foods prevents the identification of native species in pet cats’ diets using isotopic evaluation. PeerJ 8, e8337 (2020).
Google Scholar
Maeda, T., Nakashita, R., Shionosaki, K., Yamada, F. & Watari, Y. Predation on endangered species by human-subsidized domestic cats on Tokunoshima Island. Sci. Rep. 9, 16200 (2019).
Google Scholar
Stewart, G. R., Aidar, M. P. M., Joly, C. A. & Schmidt, S. Impact of point source pollution on nitrogen isotope signatures (δ15N) of vegetation in SE Brazil. Oecologia 131, 468–472 (2002).
Google Scholar
Graven, H., Keeling, R. F. & Rogelj, J. Changes to carbon isotopes in atmospheric CO2 over the industrial era and into the future. Glob. Biogeochem. Cycles 34, 1–21 (2020).
Google Scholar
DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).
Google Scholar
Linderholm, A. & Kjellström, A. Stable isotope analysis of a medieval skeletal sample indicative of systemic disease from Sigtuna Sweden. J. Archaeol. Sci. 38, 925–933 (2011).
Google Scholar
Webb, E. C. et al. Compound-specific amino acid isotopic proxies for distinguishing between terrestrial and aquatic resource consumption. Archaeol. Anthropol. Sci. 10, 1–18 (2018).
Google Scholar
Müldner, G. & Richards, M. P. Stable isotope evidence for 1500 years of human diet at the city of York, UK. Am. J. Phys. Anthropol. 133, 682–697 (2007).
Google Scholar
Müldner, G. & Richards, M. P. Fast or feast: Reconstructing diet in later medieval England by stable isotope analysis. J. Archaeol. Sci. 32, 39–48 (2005).
Google Scholar
van der Sluis, L. G., Hollund, H. I., Kars, H., Sandvik, P. U. & Denham, S. D. A palaeodietary investigation of a multi-period churchyard in Stavanger, Norway, using stable isotope analysis (C, N, H, S) on bone collagen. J. Archaeol. Sci. Rep. 9, 120–133 (2016).
Polet, C. & Katzenberg, M. A. Reconstruction of the diet in a mediaeval monastic community from the coast of Belgium. J. Archaeol. Sci. 30, 525–533 (2003).
Google Scholar
Kosiba, S. B., Tykot, R. H. & Carlsson, D. Stable isotopes as indicators of change in the food procurement and food preference of Viking Age and Early Christian populations on Gotland (Sweden). J. Anthropol. Archaeol. 26, 394–411 (2007).
Google Scholar
Olsen, K. C. et al. Isotopic anthropology of rural German medieval diet: Intra- and inter-population variability. Archaeol. Anthropol. Sci. 10, 1053–1065 (2018).
Google Scholar
Benevolo, L. The European City (Blackwell Publishers, 1993).
Barrett, J. et al. Detecting the medieval cod trade: A new method and first results. J. Archaeol. Sci. 35, 850–861 (2008).
Google Scholar
Barrett, J. H. et al. Interpreting the expansion of sea fishing in medieval Europe using stable isotope analysis of archaeological cod bones. J. Archaeol. Sci. 38, 1516–1524 (2011).
Google Scholar
Bogaard, A., Heaton, T. H. E., Poulton, P. & Merbach, I. The impact of manuring on nitrogen isotope ratios in cereals: Archaeological implications for reconstruction of diet and crop management practices. J. Archaeol. Sci. 34, 335–343 (2007).
Google Scholar
Heaton, T. H. E. Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: Implications for palaeodiet studies. J. Archaeol. Sci. 26, 637–649 (1999).
Google Scholar
Bogaard, A. et al. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl. Acad. Sci. USA. 110, 12589–12594 (2013).
Google Scholar
Styring, A. K. et al. Refining human palaeodietary reconstruction using amino acid δ15N values of plants, animals and humans. J. Archaeol. Sci. 53, 504–515 (2015).
Google Scholar
Guiry, E. Complexities of stable carbon and nitrogen isotope biogeochemistry in ancient freshwater ecosystems: Implications for the study of past subsistence and environmental change. Front. Ecol. Evol. 7, 313 (2019).
Google Scholar
Fuller, B. T., Müldner, G., Van Neer, W., Ervynck, A. & Richards, M. P. Carbon and nitrogen stable isotope ratio analysis of freshwater, brackish and marine fish from Belgian archaeological sites (1st and 2nd millennium AD). J. Anal. At. Spectrom. 27, 807–820 (2012).
Google Scholar
Robson, H. K. et al. Carbon and nitrogen stable isotope values in freshwater, brackish and marine fish bone collagen from Mesolithic and Neolithic sites in central and northern Europe. Environ. Archaeol. 21, 105–118 (2016).
Google Scholar
Hobson, K. A., Piatt, J. F. & Pitocchelli, J. Using stable isotopes to determine seabird trophic relationships. J. Anim. Ecol. 63, 786–798 (1994).
Google Scholar
Guiry, E. & Buckley, M. Urban rats have less variable, higher protein diets. Proc. R. Soc. B Biol. Sci. 285, 20181441 (2018).
Google Scholar
Bicknell, A. W. J. et al. Stable isotopes reveal the importance of seabirds and marine foods in the diet of St Kilda field mice. Sci. Rep. 10, 1–12 (2020).
Google Scholar
Hoffmann, R. C. Medieval fishing. In Working with Water in Medieval Europe. Technology and Resource-Use (ed. Squatriti, P.) 331–393 (Brill, 2000).
Gillies, C. & Clout, M. The prey of domestic cats (Felis catus) in two suburbs of Auckland City, New Zealand. J. Zool. 259, 309–315 (2003).
Google Scholar
Brickner-Braun, I., Geffen, E. & Yom-Tov, Y. The domestic cat as a predator of Israeli wildlife. Isr. J. Ecol. Evol. 53, 129–142 (2007).
Google Scholar
Flockhart, D. T. T., Norris, D. R. & Coe, J. B. Predicting free-roaming cat population densities in urban areas. Anim. Conserv. 19, 472–483 (2016).
Google Scholar
Castañeda, I., Zarzoso-Lacoste, D. & Bonnaud, E. Feeding behaviour of red fox and domestic cat populations in suburban areas in the south of Paris. Urban Ecosyst. 23, 731–743 (2020).
Google Scholar
Zhu, Y., Siegwolf, R. T. W., Durka, W. & Körner, C. Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia 162, 853–863 (2010).
Google Scholar
Männel, T. T., Auerswald, K. & Schnyder, H. Altitudinal gradients of grassland carbon and nitrogen isotope composition are recorded in the hair of grazers. Glob. Ecol. Biogeogr. 16, 583–592 (2007).
Google Scholar
Pińska, K. & Badura, M. Warunki przyrodnicze i dieta roślinna mieszkańców Pucka w późnym średniowieczu. In Puck – kultura materialna małego miasta w późnym średniowieczu (ed. Starski, M.) 517 (Uniwersytet Warszawski, 2017).
Lefebvre, A. et al. Morphology of estuarine bedforms, Weser Estuary, Germany. Earth Surf. Process. Landforms 47, 242–256 (2022).
Google Scholar
Bischop, D. & Von der Küchelmann, H. C. Küche in den Graben – Bremens Stadtgraben und die Essgewohnheiten seiner Anwohner an der Wende zur Frühen Neuzeit. In Lebensmittel im Mittelalter und in der frühen Neuzeit. Erzeugung, Verarbeitung, Versorgung. Beiträge des 16. Kolloquiums des Arbeitskreises zur archäologischen Erforschung des mittelalterlichen Handwerks, Soester Beiträge zur Archäologie 15 (ed. Melzer, W.) 137–151 (Mocker und Jahn, 2018).
Elmshäuser, K. & Pordzik, V. V. Lachsgarnen, Tomen und Kumpanen – Die älteste Bremer Fischeramtsrolle. Bremisches Jahrb. 98, 13–72 (2019).
Küchelmann, H. C. Viel Butter bei wenig Fisch. Zwei Fischknochenkomplexe des 12.–13. Jahrhunderts aus der Bremer Altstadt. In Grenzen überwinden. Archäologie zwischen Disziplin und Disziplinen. Festschrift für Uta Halle zum 65. Geburtstag, Internationale Archäologie Studia Honoraria 40 (eds Kahlow, S. et al.) 413–426 (Verlag Marie Leidorf GmbH, 2021).
Schwarcz, H. P. & Schoeninger, M. J. Stable isotope analyses in human nutritional ecology. Am. J. Phys. Anthropol. 34, 283–321 (1991).
Google Scholar
Wallace, M. et al. Stable carbon isotope analysis as a direct means of inferring crop water status and water management practices. World Archaeol. 45, 388–409 (2013).
Google Scholar
van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in amazonia. J. Archaeol. Sci. 18, 249–259 (1991).
Google Scholar
Ervynck, A. Orant, pugnant, laborant. The diet of the three orders in the feudal society of medieval north-western Europe. In Behaviour Behind Bones. The Zooarchaeology of Ritual, Religion, Status and Identity (eds O’Day, S. J. et al.) 215–223 (Oxbow Books, 2004).
von den Driesch, A. A guide to the measurement of animal bones from archaeological sites. Peabody Museum Bull. 1, 1–137 (1976).
O’Connor, T. P. Wild or domestic? Biometric variation in the cat Felis silvestris Schreber. Int. J. Osteoarchaeol. 17, 581–595 (2007).
Google Scholar
Kratochvíl, Z. Schadelkriterien der Wild- und Hauskatze (Felis silvestris silvestris Schreber 1777 und Felis s. f. catus L. 1758). Acta Sci. Nat. Brno 7, 1–50 (1973).
Kratochvíl, Z. Das Postkranialskelett der Wild- und Hauskatze (Felis silvestris und F. lybica f. catus). Acta Sci. Nat. Brno 10, 1–43 (1976).
Dyce, K. M., Sack, W. O. & Wensing, C. J. G. Textbook of Veterinary Anatomy (Saunders/Elsevier, 2010).
Krajcarz, M. et al. On the trail of the oldest domestic cat in Poland. An insight from morphometry, ancient DNA and radiocarbon dating. Int. J. Osteoarchaeol. 26, 912–919 (2016).
Google Scholar
Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37, 425–430 (1995).
Google Scholar
Bronk Ramsey, C., Dee, M., Lee, S., Nakagawa, T. & Staff, R. Developments in the calibration and modeling of radiocarbon dates. Radiocarbon 52, 953–961 (2010).
Google Scholar
Ferreira, J. P., Leitão, I., Santos-Reis, M. & Revilla, E. Human-related factors regulate the spatial ecology of domestic cats in sensitive areas for conservation. PLoS ONE 6, e25970 (2011).
Google Scholar
Pirie, T. J., Thomas, R. L. & Fellowes, M. D. E. Pet cats (Felis catus) from urban boundaries use different habitats, have larger home ranges and kill more prey than cats from the suburbs. Landsc. Urban Plan. 220, 104338 (2022).
Google Scholar
Bocherens, H. et al. Paleobiological implications of the isotopic signatures (13C, 15N) of fossil mammal collagen in Scladina cave (Sclayn, Belgium). Quat. Res. 48, 370–380 (1997).
Google Scholar
Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).
Google Scholar
Boudin, M., Boeckx, P., Vandenabeele, P. & Van Strydonck, M. Improved radiocarbon dating of contaminated protein-containing archaeological samples via cross-flow nanofiltrated amino acids. Rapid Commun. Mass Spectrom. 27, 2039–2050 (2013).
Google Scholar
Wojcieszak, M., Van Den Brande, T., Ligovich, G. & Boudin, M. Pretreatment protocols performed at the Royal Institute for Cultural Heritage (RICH) prior to AMS 14C measurements. Radiocarbon 62, e14–e24 (2020).
Google Scholar
Hammer, Ø. PAST. PAleontological Statistics. Version 4.05 Reference manual (Natural History Museum University of Oslo, 2021).
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).
Google Scholar
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
Google Scholar
Source: Ecology - nature.com