in

Statistical considerations of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action

  • Suding, K. Understanding successes and failures in restoration ecology. Annu. Rev. Ecol. Evol. Syst. 42, (2011).

  • Brudvig, L. A. et al. Interpreting variation to advance predictive restoration science. J. Appl. Ecol. 54, 1018–1027 (2017).

    Article 

    Google Scholar 

  • Germino, M. J. et al. Thresholds and hotspots for shrub restoration following a heterogeneous megafire. Landsc. Ecol. 33, 1177–1194 (2018).

    Article 

    Google Scholar 

  • Shriver, R. K. et al. Transient population dynamics impede restoration and may promote ecosystem transformation after disturbance. Ecol. Lett. 22, 1357–1366 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Chambers, J. C. et al. Resilience and resistance of sagebrush ecosystems: implications for state and transition models and management treatments. Rangel. Ecol. Manag. 67, 440–454 (2014).

    Article 

    Google Scholar 

  • Pilliod, D. S., Welty, J. L. & Toevs, G. R. Seventy-five years of vegetation treatments on public rangelands in the great basin of North America. Rangelands 39, 1–9 (2017).

    Article 

    Google Scholar 

  • Applestein, C., Germino, M. J., Pilliod, D. S., Fisk, M. R. & Arkle, R. S. Appropriate sample sizes for monitoring burned pastures in sagebrush steppe: how many plots are enough, and can one size fit all? Rangel. Ecol. Manag. 71, 721–726 (2018).

    Article 

    Google Scholar 

  • Homer, C. et al. Completion of the 2011 National Land Cover Database for the Conterminous United States-Representing a Decade of Land Cover Change Information Landsat-based mapping project. Photogramm. Eng. Remote Sens. 81, 345–354 (2015).

    Google Scholar 

  • Homer, C. G., Aldridge, C. L., Meyer, D. K. & Schell, S. J. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: Laying a foundation for monitoring. Int. J. Appl. Earth Obs. Geoinf. 14, 233–244 (2012).

    ADS 

    Google Scholar 

  • Tredennick, A. T. et al. Forecasting climate change impacts on plant populations over large spatial extents. Ecosphere 7, 1–16 (2016).

    Article 

    Google Scholar 

  • Rigge, M. et al. Quantifying western U.S. rangelands as fractional components with multi-resolution remote sensing and in situ data. Remote Sens. 12, 1–26 (2020).

    Article 

    Google Scholar 

  • Shi, H., Homer, C., Rigge, M., Postma, K. & Xian, G. Analyzing vegetation change in a sagebrush ecosystem using long-term field observations and Landsat imagery in Wyoming. Ecosphere 11, 1–20 (2020).

    Article 

    Google Scholar 

  • Williamson, M. A., Schwartz, M. W. & Lubell, M. N. Spatially explicit analytical models for social–ecological systems. Bioscience 68, 885–895 (2018).

    Google Scholar 

  • Reid, J. L., Fagan, M. E. & Zahawi, R. A. Positive site selection bias in meta-analyses comparing natural regeneration to active forest restoration. Sci. Adv. 4, 1–4 (2018).

    Article 

    Google Scholar 

  • Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS One 4, 1–6 (2009).

    Article 
    CAS 

    Google Scholar 

  • Prach, K., Šebelíková, L., Řehounková, K. & del Moral, R. Possibilities and limitations of passive restoration of heavily disturbed sites. Landsc. Res. 45, 247–253 (2020).

    Article 

    Google Scholar 

  • Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl Acad. Sci. USA 105, 16089–16094 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Jones, K. W. & Lewis, D. J. Estimating the counterfactual impact of conservation programs on land cover outcomes: The role of matching and panel regression techniques. PLoS One 10, 1–22 (2015).

    Google Scholar 

  • Christie, A. P. et al. Simple study designs in ecology produce inaccurate estimates of biodiversity responses. J. Appl. Ecol. 56, 2742–2754 (2019).

    Article 

    Google Scholar 

  • Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).

    Article 

    Google Scholar 

  • Parkhurst, T., Prober, S. M., Hobbs, R. J. & Standish, R. J. Global meta-analysis reveals incomplete recovery of soil conditions and invertebrate assemblages after ecological restoration in agricultural landscapes. J. Appl. Ecol. 1–15. https://doi.org/10.1111/1365-2664.13852. (2021)

  • Crouzeilles, R. et al. A global meta-Analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 1–8 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kettenring, K. M. & Adams, C. R. Lessons learned from invasive plant control experiments: a systematic review and meta-analysis. J. Appl. Ecol. 48, 970–979 (2011).

    Article 

    Google Scholar 

  • Atkinson, J. & Bonser, S. P. “Active” and “passive” ecological restoration strategies in meta-analysis. Restor. Ecol. 28, 1032–1035 (2020).

    Article 

    Google Scholar 

  • Rosenbaum, P. R. & Rubin, D. B. The central role of the propensity score in observational studies for causal effects. Biometrika 170–184. https://doi.org/10.1017/CBO9780511810725.016. (1983)

  • Angrist, J. D., & Pischke, J. S. Mostly harmless econometrics. (Princeton University Press, 2009).

  • Bernes, C. et al. How are biodiversity and dispersal of species affected by the management of roadsides? A systematic map. Environ. Evid. 6, 1–16 (2017).

    Article 

    Google Scholar 

  • França, F. et al. Do space-for-time assessments underestimate the impacts of logging on tropical biodiversity? An Amazonian case study using dung beetles. J. Appl. Ecol. 53, 1098–1105 (2016).

    Article 

    Google Scholar 

  • Davies, K. W. et al. Saving the sagebrush sea: an ecosystem conservation plan for big sagebrush plant communities. Biol. Conserv. 144, 2573–2584 (2011).

    Article 

    Google Scholar 

  • Miller, R. F. et al. Characteristics of Sagebrush Habitats and Limitations to Long-term Conservation. Greater sage-grouse: ecology and conservation of a landscape species and its habitats. USGS Adm. Rep. (2011).

  • Pierson, F. B. et al. Hydrologic and erosion responses of sagebrush steppe following juniper encroachment, wildfire, and tree cutting. Rangel. Ecol. Manag. 66, 274–289 (2013).

    Article 

    Google Scholar 

  • Wijayratne, U. C. & Pyke, D. A. Burial increases seed longevity of two Artemisia tridentata (Asteraceae) subspecies. Am. J. Bot. 99, 438–447 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Pyke, D. A., Wirth, T. A. & Beyers, J. L. Does seeding after wildfires in rangelands reduce erosion or invasive species? Restor. Ecol. 21, 415–421 (2013).

    Article 

    Google Scholar 

  • Knutson, K. C. et al. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems. J. Appl. Ecol. 51, 1414–1424 (2014).

    Article 

    Google Scholar 

  • Shriver, R. K. et al. Adapting management to a changing world: Warm temperatures, dry soil, and interannual variability limit restoration success of a dominant woody shrub in temperate drylands. Glob. Chang. Biol. 24, 4972–4982 (2018).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Eiswerth, M. E., Krauter, K., Swanson, S. R. & Zielinski, M. Post-fire seeding on Wyoming big sagebrush ecological sites: Regression analyses of seeded nonnative and native species densities. J. Environ. Manag. 90, 1320–1325 (2009).

    Article 

    Google Scholar 

  • Arkle, R. S. et al. Quantifying restoration effectiveness using multi-scale habitat models: Implications for sage-grouse in the Great Basin. Ecosphere 5, 1–32 (2014).

    Article 

    Google Scholar 

  • Davies, K. W. & Bates, J. D. Restoring big sagebrush after controlling encroaching western juniper with fire: aspect and subspecies effects. Restor. Ecol. 25, 33–41 (2017).

    Article 

    Google Scholar 

  • Davies, K. W., Bates, J. D. & Boyd, C. S. Postwildfire seeding to restore native vegetation and limit exotic annuals: an evaluation in juniper-dominated sagebrush steppe. Restor. Ecol. 27, 120–127 (2019).

    Article 

    Google Scholar 

  • Davies, K. W., Boyd, C. S., Madsen, M. D., Kerby, J. & Hulet, A. Evaluating a seed technology for Sagebrush restoration across an elevation gradient: support for Bet Hedging. Rangel. Ecol. Manag. 71, 19–24 (2018).

    Article 

    Google Scholar 

  • Rinella, M. J. et al. High precipitation and seeded species competition reduce seeded shrub establishment during dryland restoration. Ecol. Appl. 25, 1044–1053 (2015).

  • Davies, K. W., Boyd, C. S. & Nafus, A. M. Restoring the sagebrush component in crested wheatgrass-dominated communities. Rangel. Ecol. Manag. 66, 472–478 (2013).

    Article 

    Google Scholar 

  • United States General Accounting. WILDLAND FIRES: Better Information Needed on Effectiveness of Emergency Stabilization and Rehabilitation Treatments. Report to Congressional Requesters. https://doi.org/10.1089/blr.2006.9996. (2003)

  • Requena-Mullor, J. M., Maguire, K. C., Shinneman, D. J. & Caughlin, T. T. Integrating anthropogenic factors into regional-scale species distribution models—A novel application in the imperiled sagebrush biome. Glob. Chang. Biol. 00, 1–15 (2019).

    Google Scholar 

  • Pyke, D. A. et al. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 3. Site level restoration decisions. U.S. Geological Survey Circular 1426 (2017).

  • Chambers, J. C. et al. Science framework for conservation and restoration of the sagebrush biome: Linking the department of the interior’s integrated rangeland fire management strategy to long-term strategic conservation actions. USDA . Serv. – Gen. Tech. Rep. RMRS-GTR 2017, 1–217 (2017).

    Google Scholar 

  • US-BLM. Burned Area Emergency Stabilization and Rehabilitation – BLM Handbook H-1742-1. 2, (2007).

  • Pilliod, D. S. & Welty, J. L. Land Treatment Digital Library. Data Series. https://doi.org/10.3133/ds806. (2013)

  • Bradley, B. A. et al. Cheatgrass (Bromus tectorum) distribution in the intermountain Western United States and its relationship to fire frequency, seasonality, and ignitions. Biol. Invasions 20, 1493–1506 (2018).

    Article 

    Google Scholar 

  • Fusco, E. J., Finn, J. T., Balch, J. K., Chelsea Nagy, R. & Bradley, B. A. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc. Natl Acad. Sci. USA 116, 23594–23599 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • O’Connor, R. C. et al. Small-scale water deficits after wildfires create long-lasting ecological impacts. Environ. Res. Lett. 15, 044001 (2020).

  • Applestein, C., Caughlin, T. T. & Germino, M. J. Weather affects post‐fire recovery of sagebrush‐steppe communities and model transferability among sites. Ecosphere 12, (2021).

  • Cameron, A. C. & Miller, D. L. A. Practitioner’ s Guide to Cluster-Robust Inference. J. Human Resources. 50, 317–372 (2015).

  • Oshchepkov, A. & Shirokanova, A. Bridging the gap between multilevel modeling and economic methods. Soc. Sci. Res. in press, (2022).

  • Aldridge, C. L. & Boyce, M. S. Linking occurrence and fitness to persistence: habitat-based approach for endangered Greater Sage-Grouse. Ecol. Appl. 17, 508–526 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Allen-Diaz, B. & Bartolome, J. W. Sagebrush-grass vegetation dynamics: Comparing Classical and State-Transition models. Ecol. Appl. 8, 795–804 (1998).

    Google Scholar 

  • Schlaepfer, D. R., Lauenroth, W. K. & Bradford, J. B. Natural regeneration processes in big sagebrush (Artemisia tridentata). Rangel. Ecol. Manag. 67, 344–357 (2014).

    Article 

    Google Scholar 

  • Melgoza, G., Nowak, R. S. & Tausch, R. J. Soil water exploitation after fire: competition between Bromus tectorum (cheatgrass) and two native species. Oecologia 83, 7–13 (1990).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Williamson, M. A. et al. Fire, livestock grazing, topography, and precipitation affect occurrence and prevalence of cheatgrass (Bromus tectorum) in the central Great Basin, USA. Biol. Invasions 22, 663–680 (2020).

    Article 

    Google Scholar 

  • Groves, A. M., Bauer, J. T. & Brudvig, L. A. Lasting signature of planting year weather on restored grasslands. Sci. Rep. 10, 1–10 (2020).

    Article 
    CAS 

    Google Scholar 

  • Groves, A. M. & Brudvig, L. A. Interannual variation in precipitation and other planting conditions impacts seedling establishment in sown plant communities. Restor. Ecol. 27, 128–137 (2019).

    Article 

    Google Scholar 

  • Werner, C. M., Stuble, K. L., Groves, A. M. & Young, T. P. Year effects: Interannual variation as a driver of community assembly dynamics. Ecology 0, 1–8 (2020).

    Google Scholar 

  • Stuble, K. L., Fick, S. E. & Young, T. P. Every restoration is unique: testing year effects and site effects as drivers of initial restoration trajectories. J. Appl. Ecol. 54, 1051–1057 (2017).

    Article 

    Google Scholar 

  • Stuble, K. L., Zefferman, E. P., Wolf, K. M., Vaughn, K. J. & Young, T. P. Outside the envelope: rare events disrupt the relationshipbetween climate factors and species interactions. Ecology 98, 1623–1630 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Hardegree, S. P. et al. Weather-Centric Rangeland Revegetation Planning. Rangel. Ecol. Manag. 71, 1–11 (2018).

    Article 

    Google Scholar 

  • Allison, B., Cara, S-W. & Applestein, M. J., Germino Interannual variation in climate contributes to contingency in post‐fire restoration outcomes in seeded sagebrush steppe. Conservation Science and Practice https://doi.org/10.1111/csp2.12737.

  • Callaway, B. & Sant’Anna, P. H. C. Difference-in-Differences with multiple time periods. J. Econom. 225, 200–230 (2021).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Goodman-Bacon, A. Difference-in-differences with variation in treatment timing. J. Econom. 225, 254–277 (2021).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Starrs, C. F., Butsic, V., Stephens, C. & Stewart, W. The impact of land ownership, firefighting, and reserve status on fire probability in California. Environ. Res. Lett. 13, (2018).

  • Ferraro, P. J. & Miranda, J. J. Panel data designs and estimators as substitutes for randomized controlled trials in the evaluation of public programs. J. Assoc. Environ. Resour. Econ. 4, 281–317 (2017).

    Google Scholar 

  • Schlaepfer, D. R., Lauenroth, W. K. & Bradford, J. B. Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions. Ecol. Modell. 286, 66–77 (2014).

    Article 

    Google Scholar 

  • Kleinhesselink, A. R. & Adler, P. B. The response of big sagebrush (Artemisia tridentata) to interannual climate variation changes across its range. Ecology 99, 1139–1149 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Brabec, M. M., Germino, M. J. & Richardson, B. A. Climate adaption and post-fire restoration of a foundational perennial in cold desert: insights from intraspecific variation in response to weather. J. Appl. Ecol. 54, 293–302 (2017).

    Article 

    Google Scholar 

  • Eidenshink, J. C. et al. A project for monitoring trends in burn severity. Fire Ecol. 3, 3–21 (2007).

    Article 

    Google Scholar 

  • Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5. http://cran.r-project.org/doc/Rnews/ (2005).

  • Applestein, C. & Germino, M. J. Detecting shrub recovery in sagebrush steppe: comparing Landsat-derived maps with field data on historical wildfires. Fire Ecol. 17, (2021).

  • Rigge, M. et al. Rangeland fractional components across the western United States from 1985 to 2018. Remote Sens. 13, 1–26 (2021).

    Article 

    Google Scholar 

  • Hijmans, R. J. & van Etten, J. raster: Geographic analysis and modeling with raster data. (2012).

  • U.S. Geological, S. 1/3rd arc-second Digital Elevation Models (DEMs)–USGS National Map 3DEP Downloadable Data Collection. (2017).

  • Walkinshaw, Mike, A. T. O’Geen, D. E. B. Soil Properties. California Soil Resource Lab,

  • McCune, B. & Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13, 603–606 (2002).

    Article 

    Google Scholar 

  • Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).

    Article 

    Google Scholar 

  • Ferraro, P. J. & Hanauer, M. M. Advances in measuring the environmental and social impacts of environmental programs. Annu. Rev. Environ. Resour. 39, 495–517 (2014).

    Article 

    Google Scholar 

  • Butsic, V., Lewis, D. J., Radeloff, V. C., Baumann, M. & Kuemmerle, T. Quasi-experimental methods enable stronger inferences from observational data in ecology. Basic Appl. Ecol. 19, 1–10 (2017).

    Article 

    Google Scholar 

  • Ho, D., Imai, K., King, G. & Stuart, E. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28, https://www.jstatsoft.org/v42/i08/ (2011).

    Article 

    Google Scholar 

  • Guo, S. & Fraser, M. Propensity score analysis: statistical methods and applications. (Sage Publications, 2010).

  • Puhani, P. A. The treatment effect, the cross difference, and the interaction term in nonlinear “difference-in-differences” models. Econ. Lett. 115, 85–87 (2012).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Schlaepfer, D. R., Lauenroth, W. K. & Bradford, J. B. Effects of ecohydrological variables on current and future ranges, local suitability patterns, and model accuracy in big sagebrush. Ecography (Cop.). 35, 374–384 (2012).

    Article 

    Google Scholar 

  • Stan Development Team. RStan: the R interface to Stan. R package version 2.16.2. http://mc-stan.org (2020).

  • Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, (2017).

  • Mahr, T. & Gabry, J. bayesplot: Plotting for Bayesian Models. https://mc-stan.org/bayesplot/ R package version (2021).

  • Kay, M. tidybayes: Tidy Data and Geoms for Bayesian Models. https://doi.org/10.5281/zenodo.1308151 R package version 3.0.1. (2021).

  • Simler-Williamson, A. & Germino, M. J. Data associated with “Statistical consideration of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action”. https://doi.org/10.25338/B8W63R (2022).

  • Simler‐Williamson, A. B. R code associated with “Statistical consideration of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action”. https://doi.org/10.5281/zenodo.6565074 (2022).


  • Source: Ecology - nature.com

    Evan Leppink: Seeking a way to better stabilize the fusion environment

    Characterization of triatomine bloodmeal sources using direct Sanger sequencing and amplicon deep sequencing methods