Bauer, T., Bäte, D. A., Kempfer, F. & Schirmel, J. Differing impacts of two major plant invaders on urban plant-dwelling spiders (Araneae) during flowering season. Biol. Invasions 23(5), 1473–1485. https://doi.org/10.1007/s10530-020-02452-w (2021).
Google Scholar
Ustinova, E. N., Schepetov, D. M., Lysenkov, S. N. & Tiunov, A. V. Soil arthropod communities are not affected by invasive Solidago gigantea Aiton (Asteraceae), based on morphology and metabarcoding analyses. Soil Biol. Biochem. 159, 108288. https://doi.org/10.1016/j.soilbio.2021.108288 (2021).
Google Scholar
Tanner, R. A. et al. Impacts of an Invasive Non-Native Annual Weed, Impatiens glandulifera, on Above- and Below-Ground Invertebrate Communities in the United Kingdom. PLoS ONE 8(6), e67271. https://doi.org/10.1371/journal.pone.0067271 (2013).
Google Scholar
Wei, Q. et al. The diversity of soil mesofauna decline after bamboo invasion in subtropical China. Sci. Total Environ. 789, 147982. https://doi.org/10.1016/j.scitotenv.2021.147982 (2021).
Google Scholar
Szymura, M. & Szymura, T. H. Growth, phenology, and biomass allocation of alien Solidago species in central Europe. Plant Species Biol. 30(4), 245–256. https://doi.org/10.1111/1442-1984.12059 (2015).
Google Scholar
Bobuľská, L., Demková, L., Čerevková, A. & Renčo, M. Invasive goldenrod (Solidago gigantea) influences soil microbial activities in forest and grassland ecosystems in central Europe. Diversity 11(8), 134. https://doi.org/10.3390/d11080134 (2019).
Google Scholar
Sterzyńska, M., Shrubovych, J. & Nicia, P. Impact of plant invasion (Solidago gigantea L.) on soil mesofauna in a riparian wet meadows. Pedobiologia 64, 1–7. https://doi.org/10.1016/j.pedobi.2017.07.004 (2017).
Google Scholar
Zubek, S. et al. Solidago canadensis invasion in abandoned arable fields induces minor changes in soil properties and does not affect the performance of subsequent crops. Land Degrad. Dev. 31(3), 1–12. https://doi.org/10.1002/ldr.3452 (2019).
Google Scholar
Čerevková, A., Miklisová, D., Bobul’ská, L. & Renčo, M. Impact of the invasive plant Solidago gigantea on soil nematodes in a semi-natural grassland and a temperate broadleaved mixed forest. J. Helminthol. 94, 1–14. https://doi.org/10.1017/S0022149X19000324 (2020).
Google Scholar
de Groot, M., Kleijn, D. & Jogan, N. Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by Solidago canadensis. Biol. Conserv. 136(4), 612–617. https://doi.org/10.1016/j.biocon.2007.01.005 (2007).
Google Scholar
Baranová, B., Manko, P. & Jászay, T. Differences in surface-dwelling beetles of grasslands invaded and non-invaded by goldenrods (Solidago canadensis, S. gigantea) with special reference to Carabidae. J. Insect. Conserv. 18(4), 623–635. https://doi.org/10.1007/s10841-014-9666-0 (2014).
Google Scholar
Lenda, M., Witek, M., Skórka, P., Moroń, D. & Woyciechowski, M. Invasive alien plants affect grassland ant communities, colony size and foraging behaviour. Biol. Invasions 15(11), 2403–2414. https://doi.org/10.1007/s10530-013-0461-8 (2013).
Google Scholar
Kajzer-Bonk, J., Szpiłyk, D. & Woyciechowski, M. Invasive goldenrods affect abundance and diversity of grassland ant communities (Hymenoptera: Formicidae). J. Insect Conserv. 20(1), 99–105. https://doi.org/10.1007/s10841-016-9843-4 (2016).
Google Scholar
Trigos-Peral, G. et al. Ant communities and Solidago plant invasion: Environmental properties and food sources. Entomol. Sci. 21(3), 270–278. https://doi.org/10.1111/ens.12304 (2018).
Google Scholar
Fenesi, A. et al. Solidago canadensis impacts on native plant and pollinator communities in different-aged old fields. Basic Appl. Ecol. 16(4), 335–346. https://doi.org/10.1016/j.baae.2015.03.003 (2015).
Google Scholar
Sheley, R. L., Mangold, J. M. & Anderson, J. L. Potential for successional theory to guide restoration of invasive-plant-dominated rangeland. Ecol. Monogr. 76(3), 365–379. https://doi.org/10.1890/0012-9615(2006)076[0365:PFSTTG]2.0.CO;2 (2006).
Google Scholar
Byun, C., de Blois, S. & Brisson, J. Management of invasive plants through ecological resistance. Biol. Invasions 20(1), 13–27. https://doi.org/10.1007/s10530-017-1529-7 (2018).
Google Scholar
Weidlich, E. W. A., Flórido, F. G., Sorrini, T. B. & Brancalion, P. H. S. Controlling invasive plant species in ecological restoration: A global review. J. Appl. Ecol. 57(9), 1806–1817. https://doi.org/10.1111/1365-2664.13656 (2020).
Google Scholar
Zaller, J. G. et al. Effects of glyphosate-based herbicides and their active ingredients on earthworms, water infiltration and glyphosate leaching are influenced by soil properties. Environ. Sci. Eur. 33(1), 1–16. https://doi.org/10.1186/s12302-021-00492-0 (2021).
Google Scholar
Szymura, M., Świerszcz, S. & Szymura, T. H. Restoration of ecologically valuable grassland on sites degraded by invasive Solidago: Lessons from a six year experiment. Land Degrad. Dev. https://doi.org/10.1002/ldr.4278 (2022).
Google Scholar
Świerszcz, S., Szymura, M., Wolski, K. & Szymura, T. H. Comparison of methods for restoring meadows invaded by Solidago species. Pol. J. Environ. Stud. 26(3), 1251–1258. https://doi.org/10.15244/pjoes/67338 (2017).
Google Scholar
Nagy, D. U. et al. The more we do, the less we gain? Balancing effort and efficacy in managing the Solidago gigantea invasion. Weed Res. 60(3), 232–240. https://doi.org/10.1111/wre.12417 (2020).
Google Scholar
Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511. https://doi.org/10.1038/nature13855 (2014).
Google Scholar
Bardgett, R. D. & Wardle, D. A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change (Oxford University Press, Oxford, 2010).
Gruss, I. et al. Microarthropods and vegetation as biological indicators of soil quality studied in poor sandy sites at former military facilities. Land Degrad. Dev. 33(2), 358–367. https://doi.org/10.1002/ldr.4157 (2022).
Google Scholar
Sabais, A. C. W., Scheu, S. & Eisenhauer, N. Plant species richness drives the density and diversity of Collembola in temperate grassland. Acta Oecol. 37(3), 195–202. https://doi.org/10.1016/j.actao.2011.02.002 (2011).
Google Scholar
Kardol, P. & Wardle, D. A. How understanding aboveground-belowground linkages can assist restoration ecology. Trends Ecol. Evol. 25(11), 670–679. https://doi.org/10.1016/j.tree.2010.09.001 (2010).
Google Scholar
Eviner, V. T. & Hawkes, C. V. Embracing variability in the application of plant-soil interactions to the restoration of communities and ecosystems. Restor. Ecol. 16(4), 713–729. https://doi.org/10.1111/j.1526-100X.2008.00482.x (2008).
Google Scholar
Zhao, J., Chen, J., Wu, H., Li, L. & Pan, F. Effects of mowing frequency on soil nematode diversity and community structure in a chinese meadow steppe. Sustainability 13, 5555. https://doi.org/10.3390/su13105555 (2021).
Google Scholar
Hyvönen, T. et al. Aboveground and belowground biodiversity responses to seed mixtures and mowing in a long-term set-aside experiment. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2021.107656 (2021).
Google Scholar
Gilmullina, A., Rumpel, C., Blagodatskaya, E. & Chabbi, A. Management of grasslands by mowing versus grazing – impacts on soil organic matter quality and microbial functioning. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2020.103701 (2020).
Google Scholar
Kladivko, E. J. Tillage systems and soil ecology. Soil Tillage Res. 61(1–2), 61–76. https://doi.org/10.1016/S0167-1987(01)00179-9 (2001).
Google Scholar
Bispo, A. et al. Indicators for monitoring soil biodiversity. Integr. Environ. Assess. Manag. 5(4), 717–719 (2009).
Google Scholar
Santorufo, L., van Gestel, C. A. M., Rocco, A. & Maisto, G. Soil invertebrates as bioindicators of urban soil quality. Environ. Pollut. 161, 57–63. https://doi.org/10.1016/j.envpol.2011.09.042 (2012).
Google Scholar
Boyce R. L. Life Under Your Feet: Measuring soil invertebrate diversity. Teaching Issues and Experiments in Ecology, Ecological Society of America, 3: Experiment #1. https://tiee.esa.org/vol/v3/experiments/soil/downloads.html (2005).
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–656 (1948).
Google Scholar
Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144. https://doi.org/10.1016/0022-5193(66)90013-0 (1966).
Google Scholar
Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).
Jones, H. P. Impact of ecological restoration on ecosystem services. In Encyclopedia of Biodiversity (ed. Levin, S. A.) 199–208 (Academic Press, New York, 2013).
Google Scholar
Menta, C. Soil fauna diversity – function, soil degradation, biological indices, soil restoration. In Biodiversity Conservation and Utilization in a Diverse World (ed. Lameed, G. A.) (IntechOpen, London, 2012).
Hoffland, E., Kuyper, T. W., Comans, R. N. & Creamer, R. E. Eco-functionality of organic matter in soils. Plant Soil 455(1), 1–22. https://doi.org/10.1007/s11104-020-04651-9 (2020).
Google Scholar
Huera-Lucero, T., Labrador-Moreno, J., Blanco-Salas, J. & Ruiz-Téllez, T. A framework to incorporate biological soil quality indicators into assessing the sustainability of territories in the Ecuadorian Amazon. Sustainability 12(7), 3007. https://doi.org/10.3390/su12073007 (2020).
Google Scholar
van Eekeren, N. et al. Microarthropod communities and their ecosystem services restore when permanent grassland with mowing or low-intensity grazing is installed. Agric. Ecosyst. Environ. 323, 107682. https://doi.org/10.1016/j.agee.2021.107682 (2022).
Google Scholar
Humbert, J. Y., Ghazoul, J., Sauter, G. J. & Walter, T. Impact of different meadow mowing techniques on field invertebrates. J. Appl. Entomol. 134(7), 592–599. https://doi.org/10.1111/j.1439-0418.2009.01503.x (2010).
Google Scholar
Steidle, J. L. M., Kimmich, T., Csader, M. & Betz, O. Negative impact of roadside mowing on arthropod fauna and its reduction with ‘arthropod-friendly’ mowing technique. J. Appl. Entomol. https://doi.org/10.1111/jen.12976 (2022).
Google Scholar
Briones, M. J. Soil fauna and soil functions: a jigsaw puzzle. Front. Environ. Sci. 2, 7. https://doi.org/10.3389/fenvs.2014.00007 (2014).
Google Scholar
Shao, C., Chen, J., Li, L. & Zhang, L. Ecosystem responses to mowing manipulations in an arid Inner Mongolia steppe: An energy perspective. J. Arid Environ. 82, 1–10. https://doi.org/10.1016/j.jaridenv.2012.02.019 (2012).
Google Scholar
de Almeida, T., Forey, E. & Chauvat, M. Alien invasive plant effect on soil fauna is habitat dependent. Diversity 14(2), 61. https://doi.org/10.3390/d14020061 (2022).
Google Scholar
Wissuwa, J., Salamon, J. A. & Frank, T. Effects of habitat age and plant species on predatory mites (Acari, Mesostigmata) in grassy arable fallows in Eastern Austria. Soil Biol. Biochem. 50, 96–107. https://doi.org/10.1016/j.soilbio.2012.02.025 (2012).
Google Scholar
Petersen, H. Collembolan communities in shrublands along climatic gradients in Europe and the effects of experimental warming and drought on population density, biomass and diversity. Soil Org. 83(3), 463–488 (2011).
Eisenhauer, N. et al. Plant community impacts on the structure of earthworm communities depend on season and change with time. Soil Biol. Biochem. 41(12), 2430–2443. https://doi.org/10.1016/j.soilbio.2009.09.001 (2009).
Google Scholar
Eisenhauer, N. et al. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS ONE 6(1), 15–18. https://doi.org/10.1371/journal.pone.0016055 (2011).
Google Scholar
Gao, D., Wang, X., Fu, S. & Zhao, J. Legume plants enhance the resistance of soil to ecosystem disturbance. Front. Plant Sci. 8, 1295. https://doi.org/10.3389/fpls.2017.01295 (2017).
Google Scholar
Yang, G., Roy, J., Veresoglou, S. D. & Rillig, M. C. Soil biodiversity enhances the persistence of legumes under climate change. New Phytol. 229(5), 2945–2956. https://doi.org/10.1111/nph.17065 (2021).
Google Scholar
Zhao, J., Zeng, Z., He, X., Chen, H. & Wang, K. Effects of monoculture and mixed culture of grass and legume forage species on soil microbial community structure under different levels of nitrogen fertilization. Eur. J. Soil Biol. 68, 61–68. https://doi.org/10.1016/j.ejsobi.2015.03.008 (2015).
Google Scholar
Zhao, J., Wang, X., Wang, X. & Fu, S. Legume-soil interactions: legume addition enhances the complexity of the soil food web. Plant Soil 385(1), 273–286. https://doi.org/10.1007/s11104-014-2234-2 (2014).
Google Scholar
Bonkowski, M., Villenave, C. & Griffiths, B. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321, 213–233. https://doi.org/10.1007/s11104-009-0013-2 (2009).
Google Scholar
Hector, A., Dobson, K., Minns, A., Bazeley-White, E. & Hartley Lawton, J. Community diversity and invasion resistance: an experimental test in a grassland ecosystem and a review of comparable studies. Ecol. Res. 16(5), 819–83. https://doi.org/10.1046/j.1440-1703.2001.00443.x (2001).
Google Scholar
Gastine, A., Scherer-Lorenzen, M. & Leadley, P. W. No consistent effects of plant diversity on root biomass, soil biota and soil abiotic conditions in temperate grassland communities. Appl. Ecol. 24, 101–111. https://doi.org/10.1016/S0929-1393(02)00137-3 (2003).
Google Scholar
Scherber, C. et al. Effects of plant diversity on invertebrate herbivory in experimental grassland. Oecologia 147(3), 489–500. https://doi.org/10.1007/s00442-005-0281-3 (2006).
Google Scholar
Viketoft, M., Palmborg, C., Sohlenius, B., Huss-Danell, K. & Bengtsson, J. Plant species effects on soil nematode communities in experimental grasslands. Appl. Soil Ecol. 30(2), 90–103. https://doi.org/10.1016/j.apsoil.2005.02.007 (2005).
Google Scholar
Viketoft, M. et al. Long-term effects of plant diversity and composition on soil nematode communities in model grasslands. Ecology 90(1), 90–99. https://doi.org/10.1890/08-0382.1 (2009).
Google Scholar
Source: Ecology - nature.com