in

The impact of restoration methods for Solidago-invaded land on soil invertebrates

  • Bauer, T., Bäte, D. A., Kempfer, F. & Schirmel, J. Differing impacts of two major plant invaders on urban plant-dwelling spiders (Araneae) during flowering season. Biol. Invasions 23(5), 1473–1485. https://doi.org/10.1007/s10530-020-02452-w (2021).

    Article 

    Google Scholar 

  • Ustinova, E. N., Schepetov, D. M., Lysenkov, S. N. & Tiunov, A. V. Soil arthropod communities are not affected by invasive Solidago gigantea Aiton (Asteraceae), based on morphology and metabarcoding analyses. Soil Biol. Biochem. 159, 108288. https://doi.org/10.1016/j.soilbio.2021.108288 (2021).

    CAS 
    Article 

    Google Scholar 

  • Tanner, R. A. et al. Impacts of an Invasive Non-Native Annual Weed, Impatiens glandulifera, on Above- and Below-Ground Invertebrate Communities in the United Kingdom. PLoS ONE 8(6), e67271. https://doi.org/10.1371/journal.pone.0067271 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, Q. et al. The diversity of soil mesofauna decline after bamboo invasion in subtropical China. Sci. Total Environ. 789, 147982. https://doi.org/10.1016/j.scitotenv.2021.147982 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Szymura, M. & Szymura, T. H. Growth, phenology, and biomass allocation of alien Solidago species in central Europe. Plant Species Biol. 30(4), 245–256. https://doi.org/10.1111/1442-1984.12059 (2015).

    Article 

    Google Scholar 

  • Bobuľská, L., Demková, L., Čerevková, A. & Renčo, M. Invasive goldenrod (Solidago gigantea) influences soil microbial activities in forest and grassland ecosystems in central Europe. Diversity 11(8), 134. https://doi.org/10.3390/d11080134 (2019).

    CAS 
    Article 

    Google Scholar 

  • Sterzyńska, M., Shrubovych, J. & Nicia, P. Impact of plant invasion (Solidago gigantea L.) on soil mesofauna in a riparian wet meadows. Pedobiologia 64, 1–7. https://doi.org/10.1016/j.pedobi.2017.07.004 (2017).

    Article 

    Google Scholar 

  • Zubek, S. et al. Solidago canadensis invasion in abandoned arable fields induces minor changes in soil properties and does not affect the performance of subsequent crops. Land Degrad. Dev. 31(3), 1–12. https://doi.org/10.1002/ldr.3452 (2019).

    Article 

    Google Scholar 

  • Čerevková, A., Miklisová, D., Bobul’ská, L. & Renčo, M. Impact of the invasive plant Solidago gigantea on soil nematodes in a semi-natural grassland and a temperate broadleaved mixed forest. J. Helminthol. 94, 1–14. https://doi.org/10.1017/S0022149X19000324 (2020).

    Article 

    Google Scholar 

  • de Groot, M., Kleijn, D. & Jogan, N. Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by Solidago canadensis. Biol. Conserv. 136(4), 612–617. https://doi.org/10.1016/j.biocon.2007.01.005 (2007).

    Article 

    Google Scholar 

  • Baranová, B., Manko, P. & Jászay, T. Differences in surface-dwelling beetles of grasslands invaded and non-invaded by goldenrods (Solidago canadensis, S. gigantea) with special reference to Carabidae. J. Insect. Conserv. 18(4), 623–635. https://doi.org/10.1007/s10841-014-9666-0 (2014).

    Article 

    Google Scholar 

  • Lenda, M., Witek, M., Skórka, P., Moroń, D. & Woyciechowski, M. Invasive alien plants affect grassland ant communities, colony size and foraging behaviour. Biol. Invasions 15(11), 2403–2414. https://doi.org/10.1007/s10530-013-0461-8 (2013).

    Article 

    Google Scholar 

  • Kajzer-Bonk, J., Szpiłyk, D. & Woyciechowski, M. Invasive goldenrods affect abundance and diversity of grassland ant communities (Hymenoptera: Formicidae). J. Insect Conserv. 20(1), 99–105. https://doi.org/10.1007/s10841-016-9843-4 (2016).

    Article 

    Google Scholar 

  • Trigos-Peral, G. et al. Ant communities and Solidago plant invasion: Environmental properties and food sources. Entomol. Sci. 21(3), 270–278. https://doi.org/10.1111/ens.12304 (2018).

    Article 

    Google Scholar 

  • Fenesi, A. et al. Solidago canadensis impacts on native plant and pollinator communities in different-aged old fields. Basic Appl. Ecol. 16(4), 335–346. https://doi.org/10.1016/j.baae.2015.03.003 (2015).

    Article 

    Google Scholar 

  • Sheley, R. L., Mangold, J. M. & Anderson, J. L. Potential for successional theory to guide restoration of invasive-plant-dominated rangeland. Ecol. Monogr. 76(3), 365–379. https://doi.org/10.1890/0012-9615(2006)076[0365:PFSTTG]2.0.CO;2 (2006).

    Article 

    Google Scholar 

  • Byun, C., de Blois, S. & Brisson, J. Management of invasive plants through ecological resistance. Biol. Invasions 20(1), 13–27. https://doi.org/10.1007/s10530-017-1529-7 (2018).

    Article 

    Google Scholar 

  • Weidlich, E. W. A., Flórido, F. G., Sorrini, T. B. & Brancalion, P. H. S. Controlling invasive plant species in ecological restoration: A global review. J. Appl. Ecol. 57(9), 1806–1817. https://doi.org/10.1111/1365-2664.13656 (2020).

    Article 

    Google Scholar 

  • Zaller, J. G. et al. Effects of glyphosate-based herbicides and their active ingredients on earthworms, water infiltration and glyphosate leaching are influenced by soil properties. Environ. Sci. Eur. 33(1), 1–16. https://doi.org/10.1186/s12302-021-00492-0 (2021).

    CAS 
    Article 

    Google Scholar 

  • Szymura, M., Świerszcz, S. & Szymura, T. H. Restoration of ecologically valuable grassland on sites degraded by invasive Solidago: Lessons from a six year experiment. Land Degrad. Dev. https://doi.org/10.1002/ldr.4278 (2022).

    Article 

    Google Scholar 

  • Świerszcz, S., Szymura, M., Wolski, K. & Szymura, T. H. Comparison of methods for restoring meadows invaded by Solidago species. Pol. J. Environ. Stud. 26(3), 1251–1258. https://doi.org/10.15244/pjoes/67338 (2017).

    Article 

    Google Scholar 

  • Nagy, D. U. et al. The more we do, the less we gain? Balancing effort and efficacy in managing the Solidago gigantea invasion. Weed Res. 60(3), 232–240. https://doi.org/10.1111/wre.12417 (2020).

    Article 

    Google Scholar 

  • Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511. https://doi.org/10.1038/nature13855 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bardgett, R. D. & Wardle, D. A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change (Oxford University Press, Oxford, 2010).

    Google Scholar 

  • Gruss, I. et al. Microarthropods and vegetation as biological indicators of soil quality studied in poor sandy sites at former military facilities. Land Degrad. Dev. 33(2), 358–367. https://doi.org/10.1002/ldr.4157 (2022).

    Article 

    Google Scholar 

  • Sabais, A. C. W., Scheu, S. & Eisenhauer, N. Plant species richness drives the density and diversity of Collembola in temperate grassland. Acta Oecol. 37(3), 195–202. https://doi.org/10.1016/j.actao.2011.02.002 (2011).

    ADS 
    Article 

    Google Scholar 

  • Kardol, P. & Wardle, D. A. How understanding aboveground-belowground linkages can assist restoration ecology. Trends Ecol. Evol. 25(11), 670–679. https://doi.org/10.1016/j.tree.2010.09.001 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Eviner, V. T. & Hawkes, C. V. Embracing variability in the application of plant-soil interactions to the restoration of communities and ecosystems. Restor. Ecol. 16(4), 713–729. https://doi.org/10.1111/j.1526-100X.2008.00482.x (2008).

    Article 

    Google Scholar 

  • Zhao, J., Chen, J., Wu, H., Li, L. & Pan, F. Effects of mowing frequency on soil nematode diversity and community structure in a chinese meadow steppe. Sustainability 13, 5555. https://doi.org/10.3390/su13105555 (2021).

    Article 

    Google Scholar 

  • Hyvönen, T. et al. Aboveground and belowground biodiversity responses to seed mixtures and mowing in a long-term set-aside experiment. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2021.107656 (2021).

    Article 

    Google Scholar 

  • Gilmullina, A., Rumpel, C., Blagodatskaya, E. & Chabbi, A. Management of grasslands by mowing versus grazing – impacts on soil organic matter quality and microbial functioning. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2020.103701 (2020).

    Article 

    Google Scholar 

  • Kladivko, E. J. Tillage systems and soil ecology. Soil Tillage Res. 61(1–2), 61–76. https://doi.org/10.1016/S0167-1987(01)00179-9 (2001).

    Article 

    Google Scholar 

  • Bispo, A. et al. Indicators for monitoring soil biodiversity. Integr. Environ. Assess. Manag. 5(4), 717–719 (2009).

    CAS 
    Article 

    Google Scholar 

  • Santorufo, L., van Gestel, C. A. M., Rocco, A. & Maisto, G. Soil invertebrates as bioindicators of urban soil quality. Environ. Pollut. 161, 57–63. https://doi.org/10.1016/j.envpol.2011.09.042 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Boyce R. L. Life Under Your Feet: Measuring soil invertebrate diversity. Teaching Issues and Experiments in Ecology, Ecological Society of America, 3: Experiment #1. https://tiee.esa.org/vol/v3/experiments/soil/downloads.html (2005).

  • Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–656 (1948).

    MathSciNet 
    Article 

    Google Scholar 

  • Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144. https://doi.org/10.1016/0022-5193(66)90013-0 (1966).

    ADS 
    Article 

    Google Scholar 

  • Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).

    Google Scholar 

  • Jones, H. P. Impact of ecological restoration on ecosystem services. In Encyclopedia of Biodiversity (ed. Levin, S. A.) 199–208 (Academic Press, New York, 2013).

    Chapter 

    Google Scholar 

  • Menta, C. Soil fauna diversity – function, soil degradation, biological indices, soil restoration. In Biodiversity Conservation and Utilization in a Diverse World (ed. Lameed, G. A.) (IntechOpen, London, 2012).

    Google Scholar 

  • Hoffland, E., Kuyper, T. W., Comans, R. N. & Creamer, R. E. Eco-functionality of organic matter in soils. Plant Soil 455(1), 1–22. https://doi.org/10.1007/s11104-020-04651-9 (2020).

    CAS 
    Article 

    Google Scholar 

  • Huera-Lucero, T., Labrador-Moreno, J., Blanco-Salas, J. & Ruiz-Téllez, T. A framework to incorporate biological soil quality indicators into assessing the sustainability of territories in the Ecuadorian Amazon. Sustainability 12(7), 3007. https://doi.org/10.3390/su12073007 (2020).

    Article 

    Google Scholar 

  • van Eekeren, N. et al. Microarthropod communities and their ecosystem services restore when permanent grassland with mowing or low-intensity grazing is installed. Agric. Ecosyst. Environ. 323, 107682. https://doi.org/10.1016/j.agee.2021.107682 (2022).

    Article 

    Google Scholar 

  • Humbert, J. Y., Ghazoul, J., Sauter, G. J. & Walter, T. Impact of different meadow mowing techniques on field invertebrates. J. Appl. Entomol. 134(7), 592–599. https://doi.org/10.1111/j.1439-0418.2009.01503.x (2010).

    Article 

    Google Scholar 

  • Steidle, J. L. M., Kimmich, T., Csader, M. & Betz, O. Negative impact of roadside mowing on arthropod fauna and its reduction with ‘arthropod-friendly’ mowing technique. J. Appl. Entomol. https://doi.org/10.1111/jen.12976 (2022).

    Article 

    Google Scholar 

  • Briones, M. J. Soil fauna and soil functions: a jigsaw puzzle. Front. Environ. Sci. 2, 7. https://doi.org/10.3389/fenvs.2014.00007 (2014).

    Article 

    Google Scholar 

  • Shao, C., Chen, J., Li, L. & Zhang, L. Ecosystem responses to mowing manipulations in an arid Inner Mongolia steppe: An energy perspective. J. Arid Environ. 82, 1–10. https://doi.org/10.1016/j.jaridenv.2012.02.019 (2012).

    ADS 
    Article 

    Google Scholar 

  • de Almeida, T., Forey, E. & Chauvat, M. Alien invasive plant effect on soil fauna is habitat dependent. Diversity 14(2), 61. https://doi.org/10.3390/d14020061 (2022).

    CAS 
    Article 

    Google Scholar 

  • Wissuwa, J., Salamon, J. A. & Frank, T. Effects of habitat age and plant species on predatory mites (Acari, Mesostigmata) in grassy arable fallows in Eastern Austria. Soil Biol. Biochem. 50, 96–107. https://doi.org/10.1016/j.soilbio.2012.02.025 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petersen, H. Collembolan communities in shrublands along climatic gradients in Europe and the effects of experimental warming and drought on population density, biomass and diversity. Soil Org. 83(3), 463–488 (2011).

    Google Scholar 

  • Eisenhauer, N. et al. Plant community impacts on the structure of earthworm communities depend on season and change with time. Soil Biol. Biochem. 41(12), 2430–2443. https://doi.org/10.1016/j.soilbio.2009.09.001 (2009).

    CAS 
    Article 

    Google Scholar 

  • Eisenhauer, N. et al. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS ONE 6(1), 15–18. https://doi.org/10.1371/journal.pone.0016055 (2011).

    CAS 
    Article 

    Google Scholar 

  • Gao, D., Wang, X., Fu, S. & Zhao, J. Legume plants enhance the resistance of soil to ecosystem disturbance. Front. Plant Sci. 8, 1295. https://doi.org/10.3389/fpls.2017.01295 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, G., Roy, J., Veresoglou, S. D. & Rillig, M. C. Soil biodiversity enhances the persistence of legumes under climate change. New Phytol. 229(5), 2945–2956. https://doi.org/10.1111/nph.17065 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhao, J., Zeng, Z., He, X., Chen, H. & Wang, K. Effects of monoculture and mixed culture of grass and legume forage species on soil microbial community structure under different levels of nitrogen fertilization. Eur. J. Soil Biol. 68, 61–68. https://doi.org/10.1016/j.ejsobi.2015.03.008 (2015).

    CAS 
    Article 

    Google Scholar 

  • Zhao, J., Wang, X., Wang, X. & Fu, S. Legume-soil interactions: legume addition enhances the complexity of the soil food web. Plant Soil 385(1), 273–286. https://doi.org/10.1007/s11104-014-2234-2 (2014).

    CAS 
    Article 

    Google Scholar 

  • Bonkowski, M., Villenave, C. & Griffiths, B. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321, 213–233. https://doi.org/10.1007/s11104-009-0013-2 (2009).

    CAS 
    Article 

    Google Scholar 

  • Hector, A., Dobson, K., Minns, A., Bazeley-White, E. & Hartley Lawton, J. Community diversity and invasion resistance: an experimental test in a grassland ecosystem and a review of comparable studies. Ecol. Res. 16(5), 819–83. https://doi.org/10.1046/j.1440-1703.2001.00443.x (2001).

    Article 

    Google Scholar 

  • Gastine, A., Scherer-Lorenzen, M. & Leadley, P. W. No consistent effects of plant diversity on root biomass, soil biota and soil abiotic conditions in temperate grassland communities. Appl. Ecol. 24, 101–111. https://doi.org/10.1016/S0929-1393(02)00137-3 (2003).

    Article 

    Google Scholar 

  • Scherber, C. et al. Effects of plant diversity on invertebrate herbivory in experimental grassland. Oecologia 147(3), 489–500. https://doi.org/10.1007/s00442-005-0281-3 (2006).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Viketoft, M., Palmborg, C., Sohlenius, B., Huss-Danell, K. & Bengtsson, J. Plant species effects on soil nematode communities in experimental grasslands. Appl. Soil Ecol. 30(2), 90–103. https://doi.org/10.1016/j.apsoil.2005.02.007 (2005).

    Article 

    Google Scholar 

  • Viketoft, M. et al. Long-term effects of plant diversity and composition on soil nematode communities in model grasslands. Ecology 90(1), 90–99. https://doi.org/10.1890/08-0382.1 (2009).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Scientists chart how exercise affects the body

    Connectivity modelling in conservation science: a comparative evaluation