Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427. https://doi.org/10.1101/sqb.1957.022.01.039 (1957).
Google Scholar
Manenti, R., Melotto, A., Guillaume, O., Ficetola, G. F. & Lunghi, E. Switching from mesopredator to apex predator: How do responses vary in amphibians adapted to cave living?. Behav. Ecol. Sociobiol. 74, 126. https://doi.org/10.1007/s00265-020-02909-x (2020).
Google Scholar
Pekár, S., García, L. F. & Viera, C. Behaviour and Ecology of Spiders (Springer, 2017).
Nawrocki, B., Colborne, S. F., Yurkowski, D. J. & Fisk, A. T. Foraging ecology of Bowfin (Amia calva), in the Lake Huron-Erie Corridor of the Laurentian Great Lakes: Individual specialists in generalist populations. J. Great Lakes Res. 42, 1452–1460. https://doi.org/10.1016/j.jglr.2016.08.002 (2016).
Google Scholar
Nifong, J. C. Living on the edge: Trophic ecology of Alligator mississippiensis (American alligator) with access to a shallow estuarine impoundment. Bull. Fla. Mus. Nat. Hist. 54, 13–49 (2016).
Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786. https://doi.org/10.1126/science.1103538 (2004).
Google Scholar
Jaeger, A. et al. Age, sex, and breeding status shape a complex foraging pattern in an extremely long-lived seabird. Ecology 95, 2324–2333 (2014).
Google Scholar
Salwiczek, L. H. et al. Adult cleaner wrasse outperform capuchin monkeys, chimpanzees and orang-utans in a complex foraging task derived from cleaner: Client reef fish cooperation. PLoS ONE 7, e49068. https://doi.org/10.1371/journal.pone.0049068 (2012).
Google Scholar
Juáres, M. A., Santos, M., Mennucci, J. A., Coria, N. R. & Mariano-Jelicich, R. Diet composition and foraging habitats of Adélie and gentoo penguins in three different stages of their annual cycle. Mar. Biol. 163, 105. https://doi.org/10.1007/s00227-016-2886-y (2016).
Google Scholar
Rosenblatt, A. E. et al. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator. Oecologia 178, 5–16. https://doi.org/10.1007/s00442-014-3201-6 (2015).
Google Scholar
Casper, R. M. et al. The influence of diet on foraging habitat models: A case study using nursing Antarctic fur seals. Ecography 33, 748–759. https://doi.org/10.1111/j.1600-0587.2009.06155.x (2010).
Google Scholar
Pagani-Núñez, E., Barnett, C. A., Gu, H. & Goodale, E. The need for new categorizations of dietary specialism incorporating spatio-temporal variability of individual diet specialization. J. Zool. 300, 1–7. https://doi.org/10.1111/jzo.12364 (2016).
Google Scholar
Quevedo, M., Svanbäck, R. & Eklöv, P. Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology 90, 2263–2274. https://doi.org/10.1890/07-1580.1 (2009).
Google Scholar
Ćirović, D., Penezić, A., Milenković, M. & Paunović, M. Winter diet composition of the Golden jackal (Canis aureus L. 1758) in Serbia. Mamm. Biol. 79, 132–137. https://doi.org/10.1016/j.mambio.2013.11.003 (2014).
Google Scholar
Moser, C. F., de Avila, F. R., de Oliveira, M. & Tozetti, A. M. Diet composition and trophic niche overlap between two sympatric species of Physalaemus (Anura, Leptodactylidae, Leiuperinae) in a subtemperate forest of southern Brazil. Herpeto. Notes 10, 9–15 (2017).
Lunghi, E. et al. What shapes the trophic niche of European plethodontid salamanders?. PLoS ONE 13, e0205672. https://doi.org/10.1371/journal.pone.0205672 (2018).
Google Scholar
Evangelista, C., Boiche, A., Lecerf, A. & Cucherousset, J. Ecological opportunities and intraspecific competition alter trophic niche specialization in an opportunistic stream predator. J. Anim. Ecol. 83, 1025–1034. https://doi.org/10.1111/1365-2656.12208 (2014).
Google Scholar
Cloyed, C. S. & Eason, P. K. Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans. R. Soc. Open Sci. 4, 170060. https://doi.org/10.1098/rsos.170060 (2017).
Google Scholar
Dehnhard, N. et al. Is individual consistency in body mass and reproductive decisions linked to individual specialization in foraging behavior in a long-lived seabird?. Ecol. Evol. 6, 4488–4501. https://doi.org/10.1002/ece3.2213 (2016).
Google Scholar
Jirka, K. J. & Kraft, C. E. Diet niche width and individual specialization of Brook trout in Adirondack lakes. Trans. Am. Fish Soc. 146, 716–731. https://doi.org/10.1080/00028487.2017.1290680 (2017).
Google Scholar
Reading, C. & Jofré, G. Diet composition changes correlated with body size in the Smooth snake, Coronella austriaca, inhabiting lowland heath in southern England. Amphib. Reptil. 34, 463–470. https://doi.org/10.1163/15685381-00002899 (2013).
Google Scholar
Novak, T. et al. Niche partitioning in orbweaving spiders Meta menardi and Metellina merianae (Tetragnathidae). Acta Oecol. 36, 522–529. https://doi.org/10.1016/j.actao.2010.07.005 (2010).
Google Scholar
Stamp, N. E. & Bowers, M. D. Presence of predatory wasps and stinkbugs alters foraging behavior of cryptic and non-cryptic caterpillars on plantain (Plantago lanceolata). Oncologic 95, 376–384 (1993).
Google Scholar
Magnusson, W. E. & Lima, A. P. The ecology of a cryptic predator, Paleosuchus tigonatus, in a tropical rainforest. J. Herpetol. 25, 41–48 (1991).
Google Scholar
Riesch, R., Tobler, M. & Plath, M. Extremophile Fishes Ecology, Evolution, and Physiology of Teleosts in Extreme Environments (Springer, 2015).
Horikoshi, K. Barophiles: Deep-sea microorganisms adapted to an extreme environment. Curr. Opin. Microbiol. 1, 291–295 (1998).
Google Scholar
Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecol. Evol. 11, 5911–5926. https://doi.org/10.1002/ece3.7556 (2021).
Google Scholar
Crovetto, F., Romano, A. & Salvidio, S. Comparison of two non-lethal methods for dietary studies in terrestrial salamanders. Wildl. Res. 39, 266–270. https://doi.org/10.1071/WR11103 (2012).
Google Scholar
Wake, D. B. The enigmatic history of the European. Asian and American plethodontid salamanders. Amphib-reptile 34, 323–336 (2013).
Google Scholar
Lanza, B., Pastorelli, C., Laghi, P. & Cimmaruta, R. A review of systematics, taxonomy, genetics, biogeography and natural history of the genus Speleomantes Dubois, 1984 (Amphibia Caudata Plethodontidae). Atti Mus. Civ. Stor. Nat. Trieste 52, 5–135 (2006).
Rondinini, C., Battistoni, A., Peronace, V. & Teofili, C. Lista Rossa IUCN dei Vertebrati Italiani (Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, 2013).
European Community. Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. J. Eur. Union 206(7), 1–44 (1992).
Salvidio, S., Palumbi, G., Romano, A. & Costa, A. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats. Sci. Nat. 104, 20. https://doi.org/10.1007/s00114-017-1443-y (2017).
Google Scholar
Lunghi, E., Manenti, R. & Ficetola, G. F. Do cave features affect underground habitat exploitation by non-troglobite species?. Acta Oecol. 55, 29–35. https://doi.org/10.1016/j.actao.2013.11.003 (2014).
Google Scholar
Salvidio, S., Oneto, F., Ottonello, D., Costa, A. & Romano, A. Trophic specialization at the individual level in a terrestrial generalist salamander. Can. J. Zool. 93, 79–83. https://doi.org/10.1139/cjz-2014-0204 (2015).
Google Scholar
Lunghi, E. et al. Environmental suitability models predict population density, performance and body condition for microendemic salamanders. Sci. Rep. 8, 7527. https://doi.org/10.1038/s41598-018-25704-1 (2018).
Google Scholar
Ficetola, G. F. et al. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Sci. Rep. 8, 10575. https://doi.org/10.1038/s41598-018-28796-x (2018).
Google Scholar
Oneto, F., Ottonello, D., Pastorino, M. V. & Salvidio, S. in Scripta Herpetologica. Studies on Amphibians and Reptiles in honour of Benedetto Lanza (eds M. Capula & C. Corti) (Edizioni Belvedere, 2014).
Lunghi, E., Mascia, C., Mulargia, M. & Corti, C. Is the Sardinian grass snake (Natrix natrix cetti) an active hunter in underground environments?. Spixiana 41, 160 (2018).
Ficetola, G. F., Canedoli, C. & Stock, F. The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conserv. Biol. 33, 214–216. https://doi.org/10.1111/cobi.13179 (2019).
Google Scholar
Lunghi, E. et al. Field-recorded data on the diet of six species of European Hydromantes cave salamanders. Sci. Data 5, 180083. https://doi.org/10.1038/sdata.2018.83 (2018).
Google Scholar
Lunghi, E. et al. Updating salamander datasets with phenotypic and stomach content information for two mainland Speleomantes. Sci. Data 8, 150. https://doi.org/10.1038/s41597-021-00931-w (2021).
Google Scholar
Deban, S. M. & Dicke, U. Activation patterns of the tongue-projector muscle during feeding in the imperial cave salamander Hydromantes imperialis. J. Exp. Biol. 207, 2071–2081. https://doi.org/10.1242/jeb.00978 (2004).
Google Scholar
Deban, S. M., O’Reilly, J. C., Dicke, U. & van Leeuwen, J. L. Extremely high-power tongue projection in plethodontid salamanders. J. Exp. Biol. 210, 655–667. https://doi.org/10.1242/jeb.02664 (2007).
Google Scholar
Vignoli, L., Caldera, F. & Bologna, M. A. Trophic niche of cave populations of Speleomantes italicus. J. Nat. Hist. 40, 1841–1850 (2006).
Google Scholar
Salvidio, S. et al. Consistency in trophic strategies between populations of the Sardinian endemic salamander Speleomantes imperialis. Anim. Biol. 67, 1–16. https://doi.org/10.1163/15707563-00002517 (2017).
Google Scholar
Lunghi, E., Manenti, R. & Ficetola, G. F. Seasonal variation in microhabitat of salamanders: Environmental variation or shift of habitat selection?. PeerJ 3, e1122. https://doi.org/10.7717/peerj.1122 (2015).
Google Scholar
Lunghi, E. et al. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders. J. Therm. Biol. 60, 79–85. https://doi.org/10.1016/j.jtherbio.2016.06.010 (2016).
Google Scholar
Spotila, J. R. Role of temperature and water in the ecology of lungless salamanders. Ecol. Monogr. 42, 95–125 (1972).
Google Scholar
Manenti, R., Lunghi, E. & Ficetola, G. F. Distribution of spiders in cave twilight zone depends on microclimatic features and trophic supply. Invertebr. Biol. 134, 242–251. https://doi.org/10.1111/ivb.12092 (2015).
Google Scholar
Yurkowski, D. J. et al. Latitudinal variation in ecological opportunity and intraspecific competition indicates differences in niche variability and diet specialization of Arctic marine predators. Ecol. Evol. 6, 1666–1678. https://doi.org/10.1002/ece3.1980 (2016).
Google Scholar
Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28. https://doi.org/10.1086/343878 (2003).
Google Scholar
Araújo, M. S., Bolnick, D. L. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958. https://doi.org/10.1111/j.1461-0248.2011.01662.x (2011).
Google Scholar
Lunghi, E. et al. Same diet, different strategies: Variability of individual feeding habits across three populations of Ambrosi’s cave salamander (Hydromantes ambrosii). Diversity 12, 180. https://doi.org/10.3390/d12050180 (2020).
Google Scholar
Costa, A., Crovetto, F. & Salvidio, S. European plethodontid salamanders on the forest floor: Local abundance is related to fine-scale environmental factors. Herpetol. Conserv. Biol. 11, 344–349 (2016).
Salvidio, S., Romano, A., Oneto, F., Ottonello, D. & Michelon, R. Different season, different strategies: Feeding ecology of two syntopic forest-dwelling salamanders. Acta Oecol. 43, 42–50 (2012).
Google Scholar
Culver, D. C. & Pipan, T. The Biology of Caves and Other Subterranean Habitats 2nd edn. (Oxford University Press, 2019).
Google Scholar
Lunghi, E., Manenti, R. & Ficetola, G. F. Cave features, seasonality and subterranean distribution of non-obligate cave dwellers. PeerJ 5, e3169. https://doi.org/10.7717/peerj.3169 (2017).
Google Scholar
Lunghi, E., Ficetola, G. F., Zhao, Y. & Manenti, R. Are the neglected Tipuloidea crane flies (Diptera) an important component for subterranean environments?. Diversity 12, 333. https://doi.org/10.3390/d12090333 (2020).
Google Scholar
Manenti, R. et al. The stenoendemic cave-dwelling planarians (Platyhelminthes, Tricladida) of the Italian Alps and Apennines: Conservation issues. J. Nat. Conserv. 45, 90–97. https://doi.org/10.1016/j.jnc.2018.08.001 (2018).
Google Scholar
Lunghi, E. et al. Ecological observations on hybrid populations of European plethodontid salamanders, genus Speleomantes. Diversity 13, 285. https://doi.org/10.3390/d13070285 (2021).
Google Scholar
Lunghi, E., Guillaume, O., Blaimont, P. & Manenti, R. The first ecological study on the oldest allochthonous population of European cave salamanders (Hydromantes sp.). Amphib-Reptile 39, 113–119. https://doi.org/10.1163/15685381-00003137 (2018).
Google Scholar
Bolnick, D. I. et al. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc. R. Soc. B 277, 1789–1797. https://doi.org/10.1098/rspb.2010.0018 (2010).
Google Scholar
Lunghi, E. et al. Comparative reproductive biology of European cave salamanders (genus Hydromantes): Nesting selection and multiple annual breeding. Salamandra 54, 101–108 (2018).
Ficetola, G. F., Lunghi, E. & Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 43, 724–734. https://doi.org/10.1111/ecog.04798 (2020).
Google Scholar
Lormée, H., Jouventin, P., Trouve, C. & Chastel, O. Sex-specific patterns in baseline corticosterone and body condition changes in breeding Red-footed Boobies Sula sula. Ibis 145, 212–219 (2003).
Google Scholar
Du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: Implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob Change Biol 18, 3063–3070. https://doi.org/10.1111/j.1365-2486.2012.02778.x (2012).
Google Scholar
Lunghi, E. & Corti, C. Predation of European cave salamanders (Speleomantes) by the spider Meta bourneti. Spixiana 44, 54 (2021).
Lunghi, E. Doubling the lifespan of European plethodontid salamanders. Ecology 103, e03581. https://doi.org/10.1002/ecy.3581 (2022).
Google Scholar
Ficetola, G. F., Pennati, R. & Manenti, R. Spatial segregation among age classes in cave salamanders: Habitat selection or social interactions?. Popul Ecol 55, 217–226 (2013).
Google Scholar
Lunghi, E. et al. Interspecific and inter-population variation in individual diet specialization: Do environmental factors have a role?. Ecology 101, e03088. https://doi.org/10.1002/ecy.3088 (2020).
Google Scholar
Blamires, S. J. Plasticity in extended phenotypes: Orb web architectural responses to variations in prey parameters. J. Exp. Biol. 213, 3207–3212. https://doi.org/10.1242/jeb.045583 (2010).
Google Scholar
Costa, A. et al. Generalisation within specialization: Inter-individual diet variation in the only specialized salamander in the world. Sci. Rep. 5, 13260. https://doi.org/10.1038/srep13260 (2015).
Google Scholar
Lunghi, E. et al. Capture-mark-recapture data on the strictly protected Speleomantes italicus. Ecology 103, e3641. https://doi.org/10.1002/ecy.3641 (2022).
Google Scholar
Lunghi, E. & Bruni, G. Long-term reliability of visual implant elastomers in the Italian cave salamander (Hydromantes italicus). Salamandra 54, 283–286 (2018).
Lunghi, E., Bacci, F. & Zhao, Y. How can we record reliable information on animal colouration in the wild?. Diversity 13, 356. https://doi.org/10.3390/d13080356 (2021).
Google Scholar
Lunghi, E. et al. On the stability of the dorsal pattern of European cave salamanders (genus Hydromantes). Herpetozoa 32, 249–253. https://doi.org/10.3897/herpetozoa.32.e39030 (2019).
Google Scholar
Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5-7. https://cran.r-project.org, https://github.com/vegandevs/vegan (2020).
R Development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021) http://www.R-project.org/.
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x (2001).
Google Scholar
Băncilă, R. I., Hartel, T. R. P., Smets, J. & Cogălniceanu, D. Comparing three body condition indices in amphibians: A case study of yellow-bellied toad Bombina variegata. Amphib-Reptile 31, 558–562. https://doi.org/10.1163/017353710X518405 (2010).
Google Scholar
Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123, 111–119. https://doi.org/10.1111/j.1600-0706.2013.00755.x (2014).
Google Scholar
Lunghi, E. et al. Photographic database of the European cave salamanders, genus Hydromantes. Sci. Data 7, 171. https://doi.org/10.1038/s41597-020-0513-8 (2020).
Google Scholar
Lunghi, E., Corti, C., Manenti, R. & Ficetola, G. F. Consider species specialism when publishing datasets. Nat. Ecol. Evol. 3, 319. https://doi.org/10.1038/s41559-019-0803-8 (2019).
Google Scholar
Source: Ecology - nature.com