in

The trophic niche of subterranean populations of Speleomantes italicus

  • Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427. https://doi.org/10.1101/sqb.1957.022.01.039 (1957).

    Article 

    Google Scholar 

  • Manenti, R., Melotto, A., Guillaume, O., Ficetola, G. F. & Lunghi, E. Switching from mesopredator to apex predator: How do responses vary in amphibians adapted to cave living?. Behav. Ecol. Sociobiol. 74, 126. https://doi.org/10.1007/s00265-020-02909-x (2020).

    Article 

    Google Scholar 

  • Pekár, S., García, L. F. & Viera, C. Behaviour and Ecology of Spiders (Springer, 2017).

    Google Scholar 

  • Nawrocki, B., Colborne, S. F., Yurkowski, D. J. & Fisk, A. T. Foraging ecology of Bowfin (Amia calva), in the Lake Huron-Erie Corridor of the Laurentian Great Lakes: Individual specialists in generalist populations. J. Great Lakes Res. 42, 1452–1460. https://doi.org/10.1016/j.jglr.2016.08.002 (2016).

    Article 

    Google Scholar 

  • Nifong, J. C. Living on the edge: Trophic ecology of Alligator mississippiensis (American alligator) with access to a shallow estuarine impoundment. Bull. Fla. Mus. Nat. Hist. 54, 13–49 (2016).

    Google Scholar 

  • Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786. https://doi.org/10.1126/science.1103538 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jaeger, A. et al. Age, sex, and breeding status shape a complex foraging pattern in an extremely long-lived seabird. Ecology 95, 2324–2333 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Salwiczek, L. H. et al. Adult cleaner wrasse outperform capuchin monkeys, chimpanzees and orang-utans in a complex foraging task derived from cleaner: Client reef fish cooperation. PLoS ONE 7, e49068. https://doi.org/10.1371/journal.pone.0049068 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Juáres, M. A., Santos, M., Mennucci, J. A., Coria, N. R. & Mariano-Jelicich, R. Diet composition and foraging habitats of Adélie and gentoo penguins in three different stages of their annual cycle. Mar. Biol. 163, 105. https://doi.org/10.1007/s00227-016-2886-y (2016).

    Article 
    CAS 

    Google Scholar 

  • Rosenblatt, A. E. et al. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator. Oecologia 178, 5–16. https://doi.org/10.1007/s00442-014-3201-6 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Casper, R. M. et al. The influence of diet on foraging habitat models: A case study using nursing Antarctic fur seals. Ecography 33, 748–759. https://doi.org/10.1111/j.1600-0587.2009.06155.x (2010).

    Article 

    Google Scholar 

  • Pagani-Núñez, E., Barnett, C. A., Gu, H. & Goodale, E. The need for new categorizations of dietary specialism incorporating spatio-temporal variability of individual diet specialization. J. Zool. 300, 1–7. https://doi.org/10.1111/jzo.12364 (2016).

    Article 

    Google Scholar 

  • Quevedo, M., Svanbäck, R. & Eklöv, P. Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology 90, 2263–2274. https://doi.org/10.1890/07-1580.1 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Ćirović, D., Penezić, A., Milenković, M. & Paunović, M. Winter diet composition of the Golden jackal (Canis aureus L. 1758) in Serbia. Mamm. Biol. 79, 132–137. https://doi.org/10.1016/j.mambio.2013.11.003 (2014).

    Article 

    Google Scholar 

  • Moser, C. F., de Avila, F. R., de Oliveira, M. & Tozetti, A. M. Diet composition and trophic niche overlap between two sympatric species of Physalaemus (Anura, Leptodactylidae, Leiuperinae) in a subtemperate forest of southern Brazil. Herpeto. Notes 10, 9–15 (2017).

    Google Scholar 

  • Lunghi, E. et al. What shapes the trophic niche of European plethodontid salamanders?. PLoS ONE 13, e0205672. https://doi.org/10.1371/journal.pone.0205672 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evangelista, C., Boiche, A., Lecerf, A. & Cucherousset, J. Ecological opportunities and intraspecific competition alter trophic niche specialization in an opportunistic stream predator. J. Anim. Ecol. 83, 1025–1034. https://doi.org/10.1111/1365-2656.12208 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Cloyed, C. S. & Eason, P. K. Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans. R. Soc. Open Sci. 4, 170060. https://doi.org/10.1098/rsos.170060 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dehnhard, N. et al. Is individual consistency in body mass and reproductive decisions linked to individual specialization in foraging behavior in a long-lived seabird?. Ecol. Evol. 6, 4488–4501. https://doi.org/10.1002/ece3.2213 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jirka, K. J. & Kraft, C. E. Diet niche width and individual specialization of Brook trout in Adirondack lakes. Trans. Am. Fish Soc. 146, 716–731. https://doi.org/10.1080/00028487.2017.1290680 (2017).

    Article 

    Google Scholar 

  • Reading, C. & Jofré, G. Diet composition changes correlated with body size in the Smooth snake, Coronella austriaca, inhabiting lowland heath in southern England. Amphib. Reptil. 34, 463–470. https://doi.org/10.1163/15685381-00002899 (2013).

    Article 

    Google Scholar 

  • Novak, T. et al. Niche partitioning in orbweaving spiders Meta menardi and Metellina merianae (Tetragnathidae). Acta Oecol. 36, 522–529. https://doi.org/10.1016/j.actao.2010.07.005 (2010).

    Article 
    ADS 

    Google Scholar 

  • Stamp, N. E. & Bowers, M. D. Presence of predatory wasps and stinkbugs alters foraging behavior of cryptic and non-cryptic caterpillars on plantain (Plantago lanceolata). Oncologic 95, 376–384 (1993).

    ADS 

    Google Scholar 

  • Magnusson, W. E. & Lima, A. P. The ecology of a cryptic predator, Paleosuchus tigonatus, in a tropical rainforest. J. Herpetol. 25, 41–48 (1991).

    Article 

    Google Scholar 

  • Riesch, R., Tobler, M. & Plath, M. Extremophile Fishes Ecology, Evolution, and Physiology of Teleosts in Extreme Environments (Springer, 2015).

    Google Scholar 

  • Horikoshi, K. Barophiles: Deep-sea microorganisms adapted to an extreme environment. Curr. Opin. Microbiol. 1, 291–295 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecol. Evol. 11, 5911–5926. https://doi.org/10.1002/ece3.7556 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crovetto, F., Romano, A. & Salvidio, S. Comparison of two non-lethal methods for dietary studies in terrestrial salamanders. Wildl. Res. 39, 266–270. https://doi.org/10.1071/WR11103 (2012).

    Article 

    Google Scholar 

  • Wake, D. B. The enigmatic history of the European. Asian and American plethodontid salamanders. Amphib-reptile 34, 323–336 (2013).

    Article 

    Google Scholar 

  • Lanza, B., Pastorelli, C., Laghi, P. & Cimmaruta, R. A review of systematics, taxonomy, genetics, biogeography and natural history of the genus Speleomantes Dubois, 1984 (Amphibia Caudata Plethodontidae). Atti Mus. Civ. Stor. Nat. Trieste 52, 5–135 (2006).

    Google Scholar 

  • Rondinini, C., Battistoni, A., Peronace, V. & Teofili, C. Lista Rossa IUCN dei Vertebrati Italiani (Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, 2013).

  • European Community. Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. J. Eur. Union 206(7), 1–44 (1992).

    Google Scholar 

  • Salvidio, S., Palumbi, G., Romano, A. & Costa, A. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats. Sci. Nat. 104, 20. https://doi.org/10.1007/s00114-017-1443-y (2017).

    Article 
    CAS 

    Google Scholar 

  • Lunghi, E., Manenti, R. & Ficetola, G. F. Do cave features affect underground habitat exploitation by non-troglobite species?. Acta Oecol. 55, 29–35. https://doi.org/10.1016/j.actao.2013.11.003 (2014).

    Article 
    ADS 

    Google Scholar 

  • Salvidio, S., Oneto, F., Ottonello, D., Costa, A. & Romano, A. Trophic specialization at the individual level in a terrestrial generalist salamander. Can. J. Zool. 93, 79–83. https://doi.org/10.1139/cjz-2014-0204 (2015).

    Article 

    Google Scholar 

  • Lunghi, E. et al. Environmental suitability models predict population density, performance and body condition for microendemic salamanders. Sci. Rep. 8, 7527. https://doi.org/10.1038/s41598-018-25704-1 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ficetola, G. F. et al. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Sci. Rep. 8, 10575. https://doi.org/10.1038/s41598-018-28796-x (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oneto, F., Ottonello, D., Pastorino, M. V. & Salvidio, S. in Scripta Herpetologica. Studies on Amphibians and Reptiles in honour of Benedetto Lanza (eds M. Capula & C. Corti) (Edizioni Belvedere, 2014).

  • Lunghi, E., Mascia, C., Mulargia, M. & Corti, C. Is the Sardinian grass snake (Natrix natrix cetti) an active hunter in underground environments?. Spixiana 41, 160 (2018).

    Google Scholar 

  • Ficetola, G. F., Canedoli, C. & Stock, F. The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conserv. Biol. 33, 214–216. https://doi.org/10.1111/cobi.13179 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Lunghi, E. et al. Field-recorded data on the diet of six species of European Hydromantes cave salamanders. Sci. Data 5, 180083. https://doi.org/10.1038/sdata.2018.83 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lunghi, E. et al. Updating salamander datasets with phenotypic and stomach content information for two mainland Speleomantes. Sci. Data 8, 150. https://doi.org/10.1038/s41597-021-00931-w (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deban, S. M. & Dicke, U. Activation patterns of the tongue-projector muscle during feeding in the imperial cave salamander Hydromantes imperialis. J. Exp. Biol. 207, 2071–2081. https://doi.org/10.1242/jeb.00978 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Deban, S. M., O’Reilly, J. C., Dicke, U. & van Leeuwen, J. L. Extremely high-power tongue projection in plethodontid salamanders. J. Exp. Biol. 210, 655–667. https://doi.org/10.1242/jeb.02664 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Vignoli, L., Caldera, F. & Bologna, M. A. Trophic niche of cave populations of Speleomantes italicus. J. Nat. Hist. 40, 1841–1850 (2006).

    Article 

    Google Scholar 

  • Salvidio, S. et al. Consistency in trophic strategies between populations of the Sardinian endemic salamander Speleomantes imperialis. Anim. Biol. 67, 1–16. https://doi.org/10.1163/15707563-00002517 (2017).

    Article 

    Google Scholar 

  • Lunghi, E., Manenti, R. & Ficetola, G. F. Seasonal variation in microhabitat of salamanders: Environmental variation or shift of habitat selection?. PeerJ 3, e1122. https://doi.org/10.7717/peerj.1122 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lunghi, E. et al. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders. J. Therm. Biol. 60, 79–85. https://doi.org/10.1016/j.jtherbio.2016.06.010 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Spotila, J. R. Role of temperature and water in the ecology of lungless salamanders. Ecol. Monogr. 42, 95–125 (1972).

    Article 

    Google Scholar 

  • Manenti, R., Lunghi, E. & Ficetola, G. F. Distribution of spiders in cave twilight zone depends on microclimatic features and trophic supply. Invertebr. Biol. 134, 242–251. https://doi.org/10.1111/ivb.12092 (2015).

    Article 

    Google Scholar 

  • Yurkowski, D. J. et al. Latitudinal variation in ecological opportunity and intraspecific competition indicates differences in niche variability and diet specialization of Arctic marine predators. Ecol. Evol. 6, 1666–1678. https://doi.org/10.1002/ece3.1980 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28. https://doi.org/10.1086/343878 (2003).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Araújo, M. S., Bolnick, D. L. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958. https://doi.org/10.1111/j.1461-0248.2011.01662.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • Lunghi, E. et al. Same diet, different strategies: Variability of individual feeding habits across three populations of Ambrosi’s cave salamander (Hydromantes ambrosii). Diversity 12, 180. https://doi.org/10.3390/d12050180 (2020).

    Article 

    Google Scholar 

  • Costa, A., Crovetto, F. & Salvidio, S. European plethodontid salamanders on the forest floor: Local abundance is related to fine-scale environmental factors. Herpetol. Conserv. Biol. 11, 344–349 (2016).

    Google Scholar 

  • Salvidio, S., Romano, A., Oneto, F., Ottonello, D. & Michelon, R. Different season, different strategies: Feeding ecology of two syntopic forest-dwelling salamanders. Acta Oecol. 43, 42–50 (2012).

    Article 
    ADS 

    Google Scholar 

  • Culver, D. C. & Pipan, T. The Biology of Caves and Other Subterranean Habitats 2nd edn. (Oxford University Press, 2019).

    Book 

    Google Scholar 

  • Lunghi, E., Manenti, R. & Ficetola, G. F. Cave features, seasonality and subterranean distribution of non-obligate cave dwellers. PeerJ 5, e3169. https://doi.org/10.7717/peerj.3169 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lunghi, E., Ficetola, G. F., Zhao, Y. & Manenti, R. Are the neglected Tipuloidea crane flies (Diptera) an important component for subterranean environments?. Diversity 12, 333. https://doi.org/10.3390/d12090333 (2020).

    Article 

    Google Scholar 

  • Manenti, R. et al. The stenoendemic cave-dwelling planarians (Platyhelminthes, Tricladida) of the Italian Alps and Apennines: Conservation issues. J. Nat. Conserv. 45, 90–97. https://doi.org/10.1016/j.jnc.2018.08.001 (2018).

    Article 

    Google Scholar 

  • Lunghi, E. et al. Ecological observations on hybrid populations of European plethodontid salamanders, genus Speleomantes. Diversity 13, 285. https://doi.org/10.3390/d13070285 (2021).

    Article 

    Google Scholar 

  • Lunghi, E., Guillaume, O., Blaimont, P. & Manenti, R. The first ecological study on the oldest allochthonous population of European cave salamanders (Hydromantes sp.). Amphib-Reptile 39, 113–119. https://doi.org/10.1163/15685381-00003137 (2018).

    Article 

    Google Scholar 

  • Bolnick, D. I. et al. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc. R. Soc. B 277, 1789–1797. https://doi.org/10.1098/rspb.2010.0018 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lunghi, E. et al. Comparative reproductive biology of European cave salamanders (genus Hydromantes): Nesting selection and multiple annual breeding. Salamandra 54, 101–108 (2018).

    Google Scholar 

  • Ficetola, G. F., Lunghi, E. & Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 43, 724–734. https://doi.org/10.1111/ecog.04798 (2020).

    Article 

    Google Scholar 

  • Lormée, H., Jouventin, P., Trouve, C. & Chastel, O. Sex-specific patterns in baseline corticosterone and body condition changes in breeding Red-footed Boobies Sula sula. Ibis 145, 212–219 (2003).

    Article 

    Google Scholar 

  • Du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: Implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob Change Biol 18, 3063–3070. https://doi.org/10.1111/j.1365-2486.2012.02778.x (2012).

    Article 
    ADS 

    Google Scholar 

  • Lunghi, E. & Corti, C. Predation of European cave salamanders (Speleomantes) by the spider Meta bourneti. Spixiana 44, 54 (2021).

    Google Scholar 

  • Lunghi, E. Doubling the lifespan of European plethodontid salamanders. Ecology 103, e03581. https://doi.org/10.1002/ecy.3581 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ficetola, G. F., Pennati, R. & Manenti, R. Spatial segregation among age classes in cave salamanders: Habitat selection or social interactions?. Popul Ecol 55, 217–226 (2013).

    Article 

    Google Scholar 

  • Lunghi, E. et al. Interspecific and inter-population variation in individual diet specialization: Do environmental factors have a role?. Ecology 101, e03088. https://doi.org/10.1002/ecy.3088 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Blamires, S. J. Plasticity in extended phenotypes: Orb web architectural responses to variations in prey parameters. J. Exp. Biol. 213, 3207–3212. https://doi.org/10.1242/jeb.045583 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Costa, A. et al. Generalisation within specialization: Inter-individual diet variation in the only specialized salamander in the world. Sci. Rep. 5, 13260. https://doi.org/10.1038/srep13260 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lunghi, E. et al. Capture-mark-recapture data on the strictly protected Speleomantes italicus. Ecology 103, e3641. https://doi.org/10.1002/ecy.3641 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Lunghi, E. & Bruni, G. Long-term reliability of visual implant elastomers in the Italian cave salamander (Hydromantes italicus). Salamandra 54, 283–286 (2018).

    Google Scholar 

  • Lunghi, E., Bacci, F. & Zhao, Y. How can we record reliable information on animal colouration in the wild?. Diversity 13, 356. https://doi.org/10.3390/d13080356 (2021).

    Article 

    Google Scholar 

  • Lunghi, E. et al. On the stability of the dorsal pattern of European cave salamanders (genus Hydromantes). Herpetozoa 32, 249–253. https://doi.org/10.3897/herpetozoa.32.e39030 (2019).

    Article 

    Google Scholar 

  • Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5-7. https://cran.r-project.org, https://github.com/vegandevs/vegan (2020).

  • R Development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021) http://www.R-project.org/.

  • Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x (2001).

    Article 

    Google Scholar 

  • Băncilă, R. I., Hartel, T. R. P., Smets, J. & Cogălniceanu, D. Comparing three body condition indices in amphibians: A case study of yellow-bellied toad Bombina variegata. Amphib-Reptile 31, 558–562. https://doi.org/10.1163/017353710X518405 (2010).

    Article 

    Google Scholar 

  • Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123, 111–119. https://doi.org/10.1111/j.1600-0706.2013.00755.x (2014).

    Article 

    Google Scholar 

  • Lunghi, E. et al. Photographic database of the European cave salamanders, genus Hydromantes. Sci. Data 7, 171. https://doi.org/10.1038/s41597-020-0513-8 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lunghi, E., Corti, C., Manenti, R. & Ficetola, G. F. Consider species specialism when publishing datasets. Nat. Ecol. Evol. 3, 319. https://doi.org/10.1038/s41559-019-0803-8 (2019).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Presence of algal symbionts affects denitrifying bacterial communities in the sea anemone Aiptasia coral model

    South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail