Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol 27, 249–268. https://doi.org/10.1016/S0306-4565(01)00094-8 (2002).
Google Scholar
Ebersole, J. L., Liss, W. J. & Frissell, C. A. Cold water patches in warm streams: physicochemical characteristics and the influence of shading. JAWRA J. Am. Water Resour. Assoc. 39, 355–368. https://doi.org/10.1111/j.1752-1688.2003.tb04390.x (2003).
Google Scholar
Comte, L. & Grenouillet, G. Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography 36, 1236–1246. https://doi.org/10.1111/j.1600-0587.2013.00282.x (2013).
Google Scholar
Kurylyk, B. L., MacQuarrie, K. T. B., Linnansaari, T., Cunjak, R. A. & Curry, R. A. Preserving, augmenting, and creating cold-water thermal refugia in rivers: Concepts derived from research on the Miramichi River, New Brunswick (Canada). Ecohydrology 8, 1095–1108. https://doi.org/10.1002/eco.1566 (2015).
Google Scholar
Ebersole, J. L., Quiñones, R. M., Clements, S. & Letcher, B. H. Managing climate refugia for freshwater fishes under an expanding human footprint. Front. Ecol. Environ. 18, 271–280. https://doi.org/10.1002/fee.2206 (2020).
Google Scholar
Caissie, D. The thermal regime of rivers: a review. Freshw. Biol. 51, 1389–1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x (2006).
Google Scholar
Dick, J. J., Tetzlaff, D. & Soulsby, C. Landscape influence on small-scale water temperature variations in a moorland catchment. Hydrol. Process. 29, 3098–3111. https://doi.org/10.1002/hyp.10423 (2015).
Google Scholar
Fullerton, A. H. et al. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures. Hydrol. Process. 29, 4719–4737. https://doi.org/10.1002/hyp.10506 (2015).
Google Scholar
Fullerton, A. H. et al. Longitudinal thermal heterogeneity in rivers and refugia for coldwater species: Effects of scale and climate change. Aquatic Sci. 80, 3. https://doi.org/10.1007/s00027-017-0557-9 (2018).
Google Scholar
Segura, C., Caldwell, P., Sun, G., McNulty, S. & Zhang, Y. A model to predict stream water temperature across the conterminous USA. Hydrol. Process. 29, 2178–2195. https://doi.org/10.1002/hyp.10357 (2015).
Google Scholar
Jonkers, A. R. T. & Sharkey, K. J. The differential warming response of Britain’s rivers (1982–2011). PLOS One 11, e0166247. https://doi.org/10.1371/journal.pone.0166247 (2016).
Google Scholar
Jackson, F. L., Hannah, D. M., Fryer, R. J., Millar, C. P. & Malcolm, I. A. Development of spatial regression models for predicting summer river temperatures from landscape characteristics: Implications for land and fisheries management. Hydrol. Process. 31, 1225–1238. https://doi.org/10.1002/hyp.11087 (2017).
Google Scholar
Maheu, A., Poff, N. L. & St-Hilaire, A. A classification of stream water temperature regimes in the conterminous USA. River Res. Appl. 32, 896–906. https://doi.org/10.1002/rra.2906 (2016).
Google Scholar
Steel, E. A., Sowder, C. & Peterson, E. E. Spatial and temporal variation of water temperature regimes on the Snoqualmie River network. J. Am. Water Resour. Assoc. 52, 769–787. https://doi.org/10.1111/1752-1688.12423 (2016).
Google Scholar
Kearney, M. R., Matzelle, A. & Helmuth, B. Biomechanics meets the ecological niche: The importance of temporal data resolution. J. Exp. Biol. 215, 922–933. https://doi.org/10.1242/jeb.059634 (2012).
Google Scholar
Burgmer, T., Hillebrand, H. & Pfenninger, M. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151, 93–103. https://doi.org/10.1007/s00442-006-0542-9 (2007).
Google Scholar
Isaak, D. J., Young, M. K., Nagel, D. E., Horan, D. L. & Groce, M. C. The cold-water climate shield: Delineating refugia for preserving salmonid fishes through the 21st century. Glob. Change Biol. 21, 2540–2553. https://doi.org/10.1111/gcb.12879 (2015).
Google Scholar
Steel, E. A., Beechie, T. J., Torgersen, C. E. & Fullerton, A. H. Envisioning, quantifying, and managing thermal regimes on river networks. Bioscience 67, 506–522. https://doi.org/10.1093/biosci/bix047 (2017).
Google Scholar
Budescu, D. V. Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychol. Bull. 114, 542–551. https://doi.org/10.1037/0033-2909.114.3.542 (1993).
Google Scholar
Singhal, B. B. S. & Gupta, R. P. Applied Hydrogeology of Fractured Rocks. 2 edn, 408 (Springer, 2010).
Shimizu, T. Relation between scanty runoff from mountainous watershed and geology, slope and vegetation (in Japanese with English summary). Bull. Forestry Forest Prod. Res. Inst. 310, 109–128 (1980).
Iwasaki, K., Nagasaka, Y. & Nagasaka, A. Geological effects on the scaling relationships of groundwater contributions in Forested Watersheds. Water Resour. Res. 57, e2021WR029641. https://doi.org/10.1029/2021WR029641 (2021).
Google Scholar
Ishiyama, N. et al. The role of geology in creating stream climate-change refugia along climate gradients. bioRxiv, 2022.2005.2002.490355, https://doi.org/10.1101/2022.05.02.490355 (2022).
Kanno, Y., Vokoun, J. C. & Letcher, B. H. Paired stream-air temperature measurements reveal fine-scale thermal heterogeneity within headwater brook trout stream networks. River Res. Appl. 30, 745–755. https://doi.org/10.1002/rra.2677 (2014).
Google Scholar
Snyder, C. D., Hitt, N. P. & Young, J. A. Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecol. Appl. 25, 1397–1419. https://doi.org/10.1890/14-1354.1 (2015).
Google Scholar
Carslaw, D. C. & Ropkins, K. Openair—an R package for air quality data analysis. Environ. Model. Softw. 27–28, 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008 (2012).
Google Scholar
Pinheiro, J. C. & Bates, D. M. Mixed-Effects Models in S and S-PLUS. (Springer, 2000).
Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models. (Cambridge University Press, 2006).
Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794. https://doi.org/10.7717/peerj.4794 (2018).
Google Scholar
Clarke, P. When can group level clustering be ignored? Multilevel models versus single-level models with sparse data. J. Epidemiol. Commun. Health 62, 752. https://doi.org/10.1136/jech.2007.060798 (2008).
Google Scholar
Theall, K. P. et al. Impact of small group size on neighbourhood influences in multilevel models. J. Epidemiol. Commun. Health 65, 688–695. https://doi.org/10.1136/jech.2009.097956 (2011).
Google Scholar
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x (2013).
Google Scholar
Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. Royal Soc. Interface 14, 20170213. https://doi.org/10.1098/rsif.2017.0213 (2017).
Google Scholar
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139. https://doi.org/10.21105/joss.03139 (2021).
Google Scholar
Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. Multivariate Data Analysis: A Global Perspective. 7 edn, (Prentice Hall, 2009).
Azen, R. & Budescu, D. V. The dominance analysis approach for comparing predictors in multiple regression. Psychol. Methods 8, 129–148. https://doi.org/10.1037/1082-989x.8.2.129 (2003).
Google Scholar
Grömping, U. Estimators of relative importance in linear regression based on variance decomposition. Am. Stat. 61, 139–147. https://doi.org/10.1198/000313007X188252 (2007).
Google Scholar
Luo, W. & Azen, R. Determining predictor importance in hierarchical linear models using dominance analysis. J. Educ. Behav. Stat. 38, 3–31. https://doi.org/10.3102/1076998612458319 (2013).
Google Scholar
R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2020).
Erickson, T. R. & Stefan, H. G. Linear air/water temperature correlations for streams during open water periods. J. Hydrol. Eng. 5, 317–321. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(317) (2000).
Google Scholar
Webb, B. W., Clack, P. D. & Walling, D. E. Water–air temperature relationships in a Devon river system and the role of flow. Hydrol. Process. 17, 3069–3084. https://doi.org/10.1002/hyp.1280 (2003).
Google Scholar
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics.
30, 2811–2812. https://doi.org/10.1093/bioinformatics/btu393 (2014).
Sugimoto, S., Nakamura, F. & Ito, A. Heat budget and statistical analysis of the relationship between stream temperature and riparian forest in the Toikanbetsu River Basin, Northern Japan. J. For. Res. 2, 103–107. https://doi.org/10.1007/BF02348477 (1997).
Google Scholar
Dugdale, S. J., Malcolm, I. A., Kantola, K. & Hannah, D. M. Stream temperature under contrasting riparian forest cover: Understanding thermal dynamics and heat exchange processes. Sci. Total Environ. 610–611, 1375–1389. https://doi.org/10.1016/j.scitotenv.2017.08.198 (2018).
Google Scholar
Timm, A., Ouellet, V. & Daniels, M. Riparian land cover, water temperature variability, and thermal stress for aquatic species in urban streams. Water 13, 2732. https://doi.org/10.3390/w13192732 (2021).
Google Scholar
Mitchell, S. A simple model for estimating mean monthly stream temperatures after riparian canopy removal. Environ. Manage. 24, 77–83. https://doi.org/10.1007/s002679900216 (1999).
Google Scholar
Horne, J. P. & Hubbart, J. A. A spatially distributed investigation of stream water temperature in a contemporary mixed-land-use watershed. Water 12, 1756. https://doi.org/10.3390/w12061756 (2020).
Google Scholar
Graham, C. B., Barnard, H. R., Kavanagh, K. L. & McNamara, J. P. Catchment scale controls the temporal connection of transpiration and diel fluctuations in streamflow. Hydrol. Process. 27, 2541–2556. https://doi.org/10.1002/hyp.9334 (2013).
Google Scholar
Sun, H., Kasahara, T., Otsuki, K., Saito, T. & Onda, Y. Spatio-temporal streamflow generation in a small, steep headwater catchment in Western Japan. Hydrol. Sci. J. 62, 818–829. https://doi.org/10.1080/02626667.2016.1266635 (2017).
Google Scholar
Sophocleous, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 10, 52–67. https://doi.org/10.1007/s10040-001-0170-8 (2002).
Google Scholar
Arnott, S., Hilton, J. & Webb, B. W. The impact of geological control on flow accretion in lowland permeable catchments. Hydrol. Res. 40, 533–543. https://doi.org/10.2166/nh.2009.017 (2009).
Google Scholar
Calvache, M. L., Duque, C., Fontalva, J. M. G. & Crespo, F. Processes affecting groundwater temperature patterns in a coastal aquifer. Int. J. Environ. Sci. Technol. 8, 223–236. https://doi.org/10.1007/BF03326211 (2011).
Google Scholar
Nejadhashemi, A. P., Wardynski, B. J. & Munoz, J. D. Evaluating the impacts of land use changes on hydrologic responses in the agricultural regions of Michigan and Wisconsin. Hydrol. Earth Syst. Sci. 2011, 3421–3468, https://doi.org/10.5194/hessd-8-3421-2011 (2011).
Macedo, M. N. et al. Land-use-driven stream warming in southeastern Amazonia. Philos. Trans. R Soc. Lond. B Biol. Sci. 368, 20120153–20120153. https://doi.org/10.1098/rstb.2012.0153 (2013).
Google Scholar
Carlson, K. M. et al. Influence of watershed-climate interactions on stream temperature, sediment yield, and metabolism along a land use intensity gradient in Indonesian Borneo. J. Geophys. Res. Biogeosci. 119, 1110–1128. https://doi.org/10.1002/2013JG002516 (2014).
Google Scholar
Wang, Y. I., He, B. I. N. & Takase, K. Effects of temporal resolution on hydrological model parameters and its impact on prediction of river discharge. Hydrol. Sci. J. 54, 886–898. https://doi.org/10.1623/hysj.54.5.886 (2009).
Google Scholar
Levin, S. A. The problem of pattern and scale in ecology: The Robert H MacArthur award lecture. Ecology 73, 1943–1967. https://doi.org/10.2307/1941447 (1992).
Google Scholar
García Molinos, J. & Donohue, I. Downscaling the non-stationary effect of climate forcing on local-scale dynamics: The importance of environmental filters. Clim. Change 124, 333–346. https://doi.org/10.1007/s10584-014-1077-4 (2014).
Google Scholar
Newman, E. A., Kennedy, M. C., Falk, D. A. & McKenzie, D. Scaling and complexity in landscape ecology. Front. Ecol. Evolution https://doi.org/10.3389/fevo.2019.00293 (2019).
Google Scholar
Atkinson, S. E., Woods, R. A. & Sivapalan, M. Climate and landscape controls on water balance model complexity over changing timescales. Water Resour. Res. 38, 50-51–50-17, https://doi.org/10.1029/2002WR001487 (2002).
Engel, M. et al. Controls on spatial and temporal variability in streamflow and hydrochemistry in a glacierized catchment. Hydrol. Earth Syst. Sci. 23, 2041–2063. https://doi.org/10.5194/hess-23-2041-2019 (2019).
Google Scholar
Karlsen, R. H. et al. Landscape controls on spatiotemporal discharge variability in a boreal catchment. Water Resour. Res. 52, 6541–6556. https://doi.org/10.1002/2016WR019186 (2016).
Google Scholar
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).
Google Scholar
Weiskopf, S. R. et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782 (2020).
Google Scholar
Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109. https://doi.org/10.1038/s41467-019-10924-4 (2019).
Google Scholar
Kingsford, R. T. Conservation management of rivers and wetlands under climate change—a synthesis. Mar. Freshw. Res. 62, 217–222. https://doi.org/10.1071/MF11029 (2011).
Google Scholar
Source: Ecology - nature.com