in

Topography of the Dolomites modulates range dynamics of narrow endemic plants under climate change

  • 1.

    IPCC. Shukla, P. et al. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. (2019).

  • 2.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Moritz, C. & Agudo, R. The future of species under climate change: resilience or decline?. Science (80-) 80(341), 504–508 (2013).

    ADS 

    Google Scholar 

  • 4.

    Gobiet, A. et al. 21st century climate change in the European Alps—A review. Sci. Total Environ. 493, 1138–1151 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 5.

    Damschen, E. I., Harrison, S., Ackerly, D. D., Fernandez-Going, B. M. & Anacker, B. L. Endemic plant communities on special soils: early victims or hardy survivors of climate change?. J. Ecol. 100(5), 1122–1130 (2012).

    Google Scholar 

  • 6.

    Essl, F. et al. Distribution patterns, range size and niche breadth of Austrian endemic plants. Biol. Conserv. 142, 2547–2558 (2009).

    Google Scholar 

  • 7.

    Hülber, K. et al. Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Glob. Change Biol. 22, 2608–2619 (2016).

    ADS 

    Google Scholar 

  • 8.

    Wershow, S. T. & DeChaine, E. G. Retreat to refugia: Severe habitat contraction projected for endemic alpine plants of the Olympic Peninsula. Am. J. Bot. 105, 760–778 (2018).

    Google Scholar 

  • 9.

    Dagnino, D. et al. Climate change and the future of endemic flora in the South Western Alps: relationships between niche properties and extinction risk. Reg. Environ. Change 20, 1–12 (2020).

    Google Scholar 

  • 10.

    Dirnböck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Chang. Biol. 17, 990–996 (2011).

    ADS 

    Google Scholar 

  • 11.

    Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Pauli, H., Gottfried, M., Dirnböck, T., Dullinger, S. & Grabherr, G. Assessing the long-term dynamics of endemic plants at summit habitats. in Alpine biodiversity in Europe 195–207 (Springer, 2003).

  • 13.

    Parolo, G. & Rossi, G. Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl. Ecol. 9, 100–107 (2008).

    Google Scholar 

  • 14.

    Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).

    ADS 

    Google Scholar 

  • 15.

    Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).

    Google Scholar 

  • 16.

    Randin, C. F. et al. Climate change and plant distribution: local models predict high-elevation persistence. Glob. Change Biol. 15, 1557–1569 (2009).

    ADS 

    Google Scholar 

  • 17.

    Patsiou, T. S., Conti, E., Zimmermann, N. E., Theodoridis, S. & Randin, C. F. Topo-climatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia. Glob. Change Biol. 20, 2286–2300 (2014).

    ADS 

    Google Scholar 

  • 18.

    Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).

    ADS 

    Google Scholar 

  • 19.

    Körner, C. The alpine life zone. in Alpine Plant Life 9–20 (Springer, 2003).

  • 20.

    Badgley, C. et al. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol. Evol. 32, 211–226 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Graae, B. J. et al. Stay or go–how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).

    Google Scholar 

  • 22.

    Dobrowski, S. Z. A climatic basis for microrefugia: the influence of terrain on climate. Glob. Change Biol. 17, 1022–1035 (2011).

    ADS 

    Google Scholar 

  • 23.

    Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).

    Google Scholar 

  • 24.

    Hülber, K. et al. Habitat availability disproportionally amplifies climate change risks for lowland compared to alpine species. Glob. Ecol. Conserv. 23, e01113 (2020).

    Google Scholar 

  • 25.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 26.

    Vittoz, P. & Engler, R. Seed dispersal distances: a typology based on dispersal modes and plant traits. Bot. Helv. 117, 109–124 (2007).

    Google Scholar 

  • 27.

    Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science (80-) 80(334), 660–664 (2011).

    ADS 

    Google Scholar 

  • 28.

    Harrison, S. & Noss, R. Endemism hotspots are linked to stable climatic refugia. Ann. Bot. 119, 207–214 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Pignatti, E. & Pignatti, S. Plant life of the Dolomites. (Springer, 2016).

  • 30.

    Pawlowski, B. Remarks on endemism in the flora of the Alps and the Carpathians. Vegetatio 21, 181–243 (1970).

    Google Scholar 

  • 31.

    Schönswetter, P., Stehlik, I., Holderegger, R. & Tribsch, A. Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol. Ecol. 14, 3547–3555 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Carton, A. & Soldati, M. Geomorphological features of the Dolomites (Italy). (1993).

  • 33.

    Bosellini, A., Gianolla, P. & Stefani, M. Geology of the Dolomites. Episodes 26(3), 181–185 (2003).

    Google Scholar 

  • 34.

    Gianolla, P., Panizza, M., Micheletti, C. & Viola, F. Nomination of the Dolomites for inscription on the World Natural Heritage list UNESCO, nomination document. Prov. di Belluno, Prov. Auton. di Bolzano—Bozen, Prov. di Pordenone, Prov. Auton. di Trento, Prov. di Udine (2008).

  • 35.

    Erschbamer, B. et al. Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy). Preslia 83, 387–401 (2011).

    Google Scholar 

  • 36.

    Unterluggauer, P., Mallaun, M. & Erschbamer, B. The higher the summit, the higher the diversity changes–results of a long-term monitoring project in the Dolomites. Gredleriana 16, 5–34 (2016).

    Google Scholar 

  • 37.

    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Modell. 135, 147–186 (2000).

    Google Scholar 

  • 38.

    Pearson, R. G. Species’ distribution modeling for conservation educators and practitioners. Synth. Am. Museum Nat. Hist. 50, 54–89 (2007).

    Google Scholar 

  • 39.

    Trivedi, M. R., Berry, P. M., Morecroft, M. D. & Dawson, T. P. Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob. Change Biol. 14, 1089–1103 (2008).

    ADS 

    Google Scholar 

  • 40.

    Lembrechts, J. J., Nijs, I. & Lenoir, J. Incorporating microclimate into species distribution models. Ecography (Cop.) 42, 1267–1279 (2019).

    Google Scholar 

  • 41.

    Perazza, G. & Lorenz, R. Le orchidee dell’Italia nordorientale. Atlante corologico e Guid. al riconoscimento. Ed. Osiride, Rovereto (2013).

  • 42.

    Prosser, F., Bertolli, A., Festi, F. & Perazza, G. Flora del Trentino. Fondazione Museo civico di Rovereto (2019)

  • 43.

    Bertolli A., Prosser F., Tomasi G., Argenti C., – Flora Dolomitica. 50 fiori da conoscere nel patrimonio Unesco. Edizioni Osiride, Rovereto, 68 pp. (2019)

  • 44.

    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat suitability and distribution models: with applications in R (Cambridge University Press, Cambridge, 2017).

    Google Scholar 

  • 45.

    Rossi G., Orsenigo S., Gargano D., Montagnani C., Peruzzi L., Fenu G., Abeli T., Alessandrini A., Astuti G., Bacchetta G., Bartolucci F., Bernardo L., Bovio M., Brullo S., Carta A., Castello M., Cogoni D., Conti F., Domina G., Foggi B., Gennai M., Gigante D., Iberite M., Lasen C., Magrini S., Nicolella G., Pinna M.S., Poggio L., Prosser F., Santangelo A., Selvaggi A., Stinca A., Tartaglini N., Troia A., Villani M.C., Wagensommer R.P., Wilhalm T., Blasi C.,. Lista Rossa della Flora Italiana. 2 Endemiti e altre specie minacciate. Ministero dell’Ambiente e della Tutela del Territorio e del Mare (2020)

  • 46.

    Rossi G., Montagnani C., Gargano D., Peruzzi L., Abeli T., Ravera S., Cogoni A., Fenu G., Magrini S., Gennai M., Foggi B., Wagensommer R.P., Venturella G., Blasi C., Raimondo F.M., Orsenigo S. (Eds.), Lista Rossa della Flora Italiana. 1. Policy Species e altre specie minacciate. Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare (2013)

  • 47.

    Buffa G., Carpenè B., Casarotto N., Da Pozzo M., Filesi L., Lasen C., Marcucci R., Masin R., Prosser F., Tasinazzo S., Villani M., Zanatta K. Lista rossa regionale piante vascolari del Veneto. Regione Veneto (2016)

  • 48.

    Wilhalm, T. & Hilpold, A. Rote Liste der gefährdeten Gefäßpflanzen Südtirols (Naturmuseum Südtirols, Bozen, 2006).

    Google Scholar 

  • 49.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. data 4, 1–20 (2017).

    Google Scholar 

  • 50.

    Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8 5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. 117(33), 19656–19657 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Sanderson, B. M., Knutti, R. & Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194 (2015).

    ADS 

    Google Scholar 

  • 52.

    Kassambara A., & Mundt F. factoextra: Extract
    and Visualize the Results of Multivariate Data Analyses. R package
    version 1.0.7. https://CRAN.R-project.org/package=factoextra (2020).

  • 53.

    Lenoir, J., Hattab, T. & Pierre, G. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography (Cop.) 40, 253–266 (2017).

    Google Scholar 

  • 54.

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    Google Scholar 

  • 55.

    Thuiller, W. et al. Package ‘biomod2’. Species Distrib. Model. within an ensemble Forecast. Framew. (2016).

  • 56.

    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).

    Google Scholar 

  • 57.

    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.) 29, 129–151 (2006).

    Google Scholar 

  • 58.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Google Scholar 

  • 59.

    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).

    Google Scholar 

  • 60.

    Cao, Y. et al. Using Maxent to model the historic distributions of stonefly species in Illinois streams: the effects of regularization and threshold selections. Ecol. Modell. 259, 30–39 (2013).

    Google Scholar 

  • 61.

    R Core Team. R: A Language and Environment for Statistical Computing. (2020).

  • 62.

    Riley, S. J., DeGloria, S. D. & Elliot, R. Index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 23–27 (1999).

    Google Scholar 

  • 63.

    Irl, S. D. H. et al. Climate vs topography–spatial patterns of plant species diversity and endemism on a high-elevation island. J. Ecol. 103, 1621–1633 (2015).

    Google Scholar 

  • 64.

    Tarquini, S. & Nannipieri, L. The 10 m-resolution TINITALY DEM as a trans-disciplinary basis for the analysis of the Italian territory: Current trends and new perspectives. Geomorphology 281, 108–115 (2017).

    ADS 

    Google Scholar 

  • 65.

    Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Chang. Biol. 21, 997–1004 (2015).

    ADS 

    Google Scholar 

  • 66.

    Dexter, F. Wilcoxon-Mann-Whitney test used for data that are not normally distributed. Anesth. Anal. 117, 537–538 (2013)

  • 67.

    Geppert, C. et al. Consistent population declines but idiosyncratic range shifts in Alpine orchids under global change. Nat. Commun. 11, 1–11 (2020).

    Google Scholar 

  • 68.

    Erfanian, M. B., Sagharyan, M., Memariani, F. & Ejtehadi, H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 11, 1–13 (2021).

    Google Scholar 

  • 69.

    Muñoz-Sáez, A., Choe, H., Boynton, R. M., Elsen, P. R. & Thorne, J. H. Climate exposure shows high risk and few climate refugia for Chilean native vegetation. Sci. Total Environ. 785, 147399 (2021).

    ADS 

    Google Scholar 

  • 70.

    Dullinger, S. et al. Post-glacial migration lag restricts range filling of plants in the European Alps. Glob. Ecol. Biogeogr. 21, 829–840 (2012).

    Google Scholar 

  • 71.

    Sedlacek, J. F., Bossdorf, O., Cortés, A. J., Wheeler, J. A. & van Kleunen, M. What role do plant–soil interactions play in the habitat suitability and potential range expansion of the alpine dwarf shrub Salix herbacea?. Basic Appl. Ecol. 15(4), 305–315 (2014).

    Google Scholar 

  • 72.

    Di Nuzzo, L. et al. Contrasting multitaxon responses to climate change in Mediterranean mountains. Sci. Rep. 11, 1–12 (2021).

    Google Scholar 

  • 73.

    Zecca, G., Casazza, G., Piscopo, S., Minuto, L. & Grassi, F. Are the responses of plant species to Quaternary climatic changes idiosyncratic? A demographic perspective from the Western Alps. Plant Ecol. Divers. 10, 273–281 (2017).

    Google Scholar 

  • 74.

    Dainese, M. et al. Human disturbance and upward expansion of plants in a warming climate. Nat. Clim. Chang. 7, 577–580 (2017).

    ADS 

    Google Scholar 

  • 75.

    Boisvert-Marsh, L., Périé, C. & de Blois, S. Divergent responses to climate change and disturbance drive recruitment patterns underlying latitudinal shifts of tree species. J. Ecol. 107, 1956–1969 (2019).

    Google Scholar 

  • 76.

    Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L. & Hannah, L. E. E. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538–548 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Casazza, G. et al. Climate change hastens the urgency of conservation for range-restricted plant species in the central-northern Mediterranean region. Biol. Conserv. 179, 129–138 (2014).

    Google Scholar 

  • 78.

    Körner, C. The use of ‘altitude’in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Engler, R. et al. Predicting future distributions of mountain plants under climate change: does dispersal capacity matter?. Ecography (Cop.) 32, 34–45 (2009).

    Google Scholar 

  • 80.

    Ozinga, W. A. et al. Dispersal failure contributes to plant losses in NW Europe. Ecol. Lett. 12, 66–74 (2009).

    Google Scholar 

  • 81.

    Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl. Acad. Sci. 112, 12741–12745 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Niskanen, A. K. J., Niittynen, P., Aalto, J., Väre, H. & Luoto, M. Lost at high latitudes: Arctic and endemic plants under threat as climate warms. Divers. Distrib. 25, 809–821 (2019).

    Google Scholar 

  • 83.

    Trew, B. T. & Maclean, I. M. D. Vulnerability of global biodiversity hotspots to climate change. Glob. Ecol. Biogeogr. 30, 768–783 (2021).

    Google Scholar 

  • 84.

    Garcia, M. B. et al. Rocky habitats as microclimatic refuges for biodiversity. A close-up thermal approach. Environ. Exp. Bot. 170, 103886 (2020).

    Google Scholar 

  • 85.

    Tribsch, A. Areas of endemism of vascular plants in the Eastern Alps in relation to Pleistocene glaciation. J. Biogeogr. 31, 747–760 (2004).

    Google Scholar 

  • 86.

    Keppel, G. et al. The capacity of refugia for conservation planning under climate change. Front. Ecol. Environ. 13, 106–112 (2015).

    Google Scholar 

  • 87.

    Panizza, M. The geomorphodiversity of the Dolomites (Italy): a key of geoheritage assessment. Geoheritage 1, 33–42 (2009).

    Google Scholar 

  • 88.

    Santini, L., Benitez-López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. J. Assessing the reliability of species distribution projections in climate change research. Divers. Distrib. 27, 1035–1050 (2021).

    Google Scholar 

  • 89.

    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science (80-) 341, 499–504 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 90.

    Meineri, E. & Hylander, K. Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography (Cop.) 40, 1003–1013 (2017).

    Google Scholar 

  • 91.

    Ferrarini, A. et al. Planning for assisted colonization of plants in a warming world. Sci. Rep. 6, 1–6 (2016).

    Google Scholar 

  • 92.

    Casazza, G. et al. Combining conservation status and species distribution models for planning assisted colonisation under climate change. J. Ecol. 109, 2284–2295 (2021)


  • Source: Ecology - nature.com

    Wildland fire smoke alters the composition, diversity, and potential atmospheric function of microbial life in the aerobiome

    No short-term effect of sinking microplastics on heterotrophy or sediment clearing in the tropical coral Stylophora pistillata