in

Tracing the oomycete pathogen Saprolegnia parasitica in aquaculture and the environment

  • Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Phillips, A. J., Anderson, V. L., Robertson, E. J., Secombes, C. J. & van West, P. New insights into animal pathogenic oomycetes. Trends Microbiol. 16, 13–19 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • van den Berg, A. H., McLaggan, D., Diéguez-Uribeondo, J. & van West, P. The impact of the water moulds Saprolegnia diclina and Saprolegnia parasitica on natural ecosystems and the aquaculture industry. Fungal Biol. Rev. 27, 33–42 (2013).

    Google Scholar 

  • van West, P. Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: New challenges for an old problem. Mycologist 20, 99–104 (2006).

    Google Scholar 

  • Hussein, M. M. A., Hatai, K. & Nomura, T. Saprolegniosis in salmonids and their eggs in Japan. J. Wildl. Dis. 37, 204–207 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Pavić, D. et al. Identification and molecular characterization of oomycete isolates from trout farms in Croatia, and their upstream and downstream water environments. Aquaculture 540, 736652 (2021).

    Google Scholar 

  • Tedesco, P. et al. Evaluation of potential transfer of the pathogen Saprolegnia parasitica between farmed salmonids and wild fish. Pathogens 10, 926 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diéguez-Uribeondo, J., Cerenius, L. & Söderhäll, K. Physiological characterization of Saprolegnia parasitica isolates from brown trout. Aquaculture 140, 247–257 (1996).

    Google Scholar 

  • Ravasi, D., De Respinis, S. & Wahli, T. Multilocus sequence typing reveals clonality in Saprolegnia parasitica outbreaks. J. Fish Dis. 41, 1653–1665 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Bly, J. E., Lawson, L. A., Szalai, A. J. & Clem, L. W. Environmental factors affecting outbreaks of winter saprolegniosis in channel catfish, Ictalurus punctatus (Rafinesque). J. Fish Dis. 16, 541–549 (1993).

    Google Scholar 

  • Rezinciuc, S., Sandoval-Sierra, J. V., Ruiz-León, Y., Van West, P. & Diéguez-Uribeondo, J. Specialized attachment structure of the fish pathogenic oomycete Saprolegnia parasitica. PLoS ONE 13, 1–17 (2018).

    Google Scholar 

  • Tandel, R. S. et al. Morphological and molecular characterization of Saprolegnia spp. from Himalayan snow trout, Schizothorax richardsonii: A case study report. Aquaculture 531, 735824 (2021).

    CAS 

    Google Scholar 

  • Howe, G. E. & Stehly, G. R. Experimental infection of rainbow trout with Saprolegnia parasitica experimental infection of rainbow trout. J. Aquat. Anim. Health 10, 397–404 (1998).

    Google Scholar 

  • Dieguez-Uribeondo, J. Adaptation to parasitism of some animal pathogenic Saprolegniaceae. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 122. Acta Universitatis Upsalienis (1995).

  • Kitancharoen, N., Yuasa, K. & Hatai, K. Effects of pH and temperature on growth of Saprolegnia diclina and S. parasitica isolated from various sources. Mycoscience 37, 385–390 (1996).

    Google Scholar 

  • Meinelt, T. et al. Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substance of different qualities. Aquat. Toxicol. 83, 93–103 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Burr, A. W. & Beakes, G. W. Characterization of zoospore and cyst surface structure in saprophytic and fish pathogenic Saprolegnia species (oomycete fungal protists). Protoplasma 181, 142–163 (1994).

    Google Scholar 

  • Elameen, A. et al. Genetic analyses of saprolegnia strains isolated from salmonid fish of different geographic origin document the connection between pathogenicity and molecular diversity. J. Fungi 7, 1–13 (2021).

    Google Scholar 

  • Masigol, H. et al. Taxonomical and functional diversity of Saprolegniales in Anzali lagoon, Iran. Aquat. Ecol. 51, 323–336 (2020).

    Google Scholar 

  • Singer, D. et al. High-throughput sequencing reveals diverse oomycete communities in oligotrophic peat bog micro-habitat. Fungal Ecol. 23, 42–47 (2016).

    Google Scholar 

  • Hatai, K. & Hoshiai, G. Mass mortality in cultured coho salmon (Oncorhynchus kisutch) due to Saprolegnia parasitica Coker. J. Wildl. Dis. 28, 532–536 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • Sarowar, M. N., Cusack, R. & Duston, J. Saprolegnia molecular phylogeny among farmed teleosts in Nova Scotia, Canada. J. Fish Dis. 42, 1745–1760 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Sakaguchi, S. O. et al. Molecular identification of water molds (oomycetes) associated with chum salmon eggs from hatcheries in Japan and possible sources of their infection. Aquac. Int. 27, 1739–1749 (2019).

    Google Scholar 

  • Sandoval-Sierra, J. V., Latif-Eugenin, F., Martín, M. P., Zaror, L. & Diéguez-Uribeondo, J. Saprolegnia species affecting the salmonid aquaculture in Chile and their associations with fish developmental stage. Aquaculture 434, 462–469 (2014).

    Google Scholar 

  • Amarasiri, M., Furukawa, T., Nakajima, F. & Sei, K. Pathogens and disease vectors/hosts monitoring in aquatic environments: Potential of using eDNA/eRNA based approach. Sci. Total Environ. 796, 148810 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pavić, D. et al. Non-destructive method for detecting Aphanomyces astaci, the causative agent of crayfish plague, on the individual level. J. Invertebr. Pathol. 169, 107274 (2020).

    PubMed 

    Google Scholar 

  • Sapkota, R. & Nicolaisen, M. An improved high throughput sequencing method for studying oomycete communities. J. Microbiol. Methods 110, 33–39 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Strand, D. A. et al. Monitoring a Norwegian freshwater crayfish tragedy: eDNA snapshots of invasion, infection and extinction. J. Appl. Ecol. 56, 1661–1673 (2019).

    CAS 

    Google Scholar 

  • Ghosh, S., Straus, D. L., Good, C. & Phuntumart, V. Development and comparison of loop-mediated isothermal amplification with quantitative PCR for the specific detection of Saprolegnia spp. PLoS ONE 16, 1–17 (2021).

    Google Scholar 

  • Blaya, J., Lloret, E., Santísima-Trinidad, A. B., Ros, M. & Pascual, J. A. Molecular methods (digital PCR and real-time PCR) for the quantification of low copy DNA of Phytophthora nicotianae in environmental samples. Pest Manag. Sci. 72, 747–753 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Davison, P. I., Copp, G. H., Créach, V., Vilizzi, L. & Britton, J. R. Application of environmental DNA analysis to inform invasive fish eradication operations. Sci. Nat. 104, 1–7 (2017).

    CAS 

    Google Scholar 

  • Tuffs, S. & Oidtmann, B. A comparative study of molecular diagnostic methods designed to detect the crayfish plague pathogen, Aphanomyces astaci. Vet. Microbiol. 153, 343–353 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Rusch, J. C. et al. Simultaneous detection of native and invasive crayfish and Aphanomyces astaci from environmental DNA samples in a wide range of habitats in Central Europe. NeoBiota 58, 1–32 (2020).

    Google Scholar 

  • Hindson, C. M. et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 10, 1003–1005 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoshino, T. & Inagaki, F. Molecular quantification of environmental DNA using microfluidics and digital PCR. Syst. Appl. Microbiol. 35, 390–395 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Pinheiro, L. B. et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84, 1003–1011 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Rocchi, S. et al. Quantification of Saprolegnia parasitica in river water using real-time quantitative PCR: From massive fish mortality to tap drinking water. Int. J. Environ. Health Res. 27, 1–10 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Gibert, S. et al. Risk assessment of Aphanomyces euteiches root rot disease: Quantification of low inoculum densities in field soils using droplet digital PCR. Eur. J. Plant Pathol. 161, 503–528 (2021).

    CAS 

    Google Scholar 

  • Ristaino, J. B., Saville, A. C., Paul, R., Cooper, D. C. & Wei, Q. Detection of Phytophthora infestans by loop-mediated isothermal amplification, real-time LAMP, and droplet digital PCR. Plant Dis. 104, 708–716 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Lévesque, C. A. & De Cock, A. W. Molecular phylogeny and taxonomy of the genus Pythium. Mycol. Res. 108, 1363–1383 (2004).

    PubMed 

    Google Scholar 

  • Oidtmann, B., Geiger, S., Steinbauer, P., Culas, A. & Hoffmann, R. W. Detection of Aphanomyces astaci in North American crayfish by polymerase chain reaction. Dis. Aquat. Organ. 72, 53–64 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Sandoval-Sierra, J. V., Martín, M. P. & Diéguez-Uribeondo, J. Species identification in the genus Saprolegnia (Oomycetes): Defining DNA-based molecular operational taxonomic units. Fungal Biol. 118, 559–578 (2013).

    PubMed 

    Google Scholar 

  • Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 1–11 (2012).

    Google Scholar 

  • Jain, P. et al. A multivariate approach to investigate the combined biological effects of multiple exposures. J. Epidemiol. Community Health 72, 564–571 (2018).

    PubMed 

    Google Scholar 

  • Lew, S., Glińska-Lewczuk, K. & Lew, M. The effects of environmental parameters on the microbial activity in peat-bog lakes. PLoS ONE 14, e0224441 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montalva, C. et al. First report of Leptolegnia chapmanii (Peronosporomycetes: Saprolegniales) affecting mosquitoes in central Brazil. J. Invertebr. Pathol. 136, 109–116 (2016).

    PubMed 

    Google Scholar 

  • Robideau, G. P. et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol. Ecol. Resour. 11, 1002–1011 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Catal, M., Erler, F., Fulbright, D. W. & Adams, G. C. Real-time quantitative PCR assays for evaluation of soybean varieties for resistance to the stem and root rot pathogen Phytophthora sojae. Eur. J. Plant Pathol. 137, 859–869 (2013).

    CAS 

    Google Scholar 

  • Jiang, R. H. Y. et al. Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica. PLoS Genet. 9, e1003272 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dieguez-Uribeondo, J., Cerenius, L. & Soderhall, K. Saprolegnia parasitica and its virulence on three different species of freshwater crayfish. Aquaculture 120, 219–228 (1994).

    Google Scholar 

  • Söderhäll, K., Dick, M. W., Clark, G., Fürst, M. & Constantinescu, O. Isolation of Saprolegnia parasitica from the crayfish Astacus leptodactylus. Aquaculture 92, 121–125 (1991).

    Google Scholar 

  • Bly, J. E. et al. Winter saprolegniosis in channel catfish. Dis. Aquat. Organ. 13, 155–164 (1992).

    Google Scholar 

  • Gozlan, R. E. et al. Current ecological understanding of fungal-like pathogens of fish: What lies beneath?. Front. Microbiol. 5, 1–16 (2014).

    Google Scholar 

  • Weyhenmeyer, G. A. et al. Widespread diminishing anthropogenic effects on calcium in freshwaters. Sci. Rep. 9, 1–10 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Deacon, J. W. & Donaldson, S. P. Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycol. Res. 97, 1153–1171 (1993).

    CAS 

    Google Scholar 

  • Ford, D. C. & Williams, P. W. Karst Hydrogeology and Geomorphology (Wiley, 2007).

    Google Scholar 

  • Baldisserotto, B., Chowdhury, M. J. & Wood, C. M. Effects of dietary calcium and cadmium on cadmium accumulation, calcium and cadmium uptake from the water, and their interactions in juvenile rainbow trout. Aquat. Toxicol. 72, 99–117 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Barszcz, A. A., Siemianowska, E., Sidoruk, M. & Skibniewska, K. A. Influence of farming technology on bioaccumulation of calcium, magnesium and sodium in muscle tissue of rainbow trout (Oncorhynchus mykiss Walbaum). Environ. Prot. Nat. Resour. 25, 15–19 (2014).

    Google Scholar 

  • Ali, E. H. Morphological and biochemical alterations of oomycete fish pathogen Saprolegnia parasitica as affected by salinity, ascorbic acid and their synergistic action. Mycopathologia 159, 231–243 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Schuler, M. S. et al. Regulations are needed to protect freshwater ecosystems from salinization. Philos. Trans. R. Soc. B 374, 20180019 (2019).

    CAS 

    Google Scholar 

  • Boisen, A. M. Z., Amstrup, J., Novak, I. & Grosell, M. Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio). Biochim. Biophys. Acta 1618, 207–218 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Marquis, R. E., Clock, S. A. & Mota-Meira, M. Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol. Rev. 26, 493–510 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Mendes, G. et al. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity. Appl. Environ. Microbiol. 80, 3081–3085 (2014).

    ADS 
    PubMed Central 

    Google Scholar 

  • Camargo, J. A. Fluoride toxicity to aquatic organisms: A review. Chemosphere 50, 251–264 (2003).

    ADS 
    PubMed 

    Google Scholar 

  • Min, H., Hatai, K. & Bai, S. Some inhibitory effects of chitosan on fish-pathogenic oomycete, Saprolegnia parasitica. Fish Pathol. 29, 73–77 (1998).

    Google Scholar 

  • Liu, Y. et al. Deciphering microbial landscapes of fish eggs to mitigate emerging diseases. ISME J. 8, 2002–2014 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • ‘Directive 2010/63/EU of the European Parliament and of the Council on the protection of animals used for scientific purposes’. Off. J. Eur. Union L276, 33 (2010).

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gouy, M., Guindon, S. & Gascuel, O. Sea view version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Hall, T., Biosciences, I. & Carlsbad, C. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2, 60–61 (2011).

    Google Scholar 


  • Source: Ecology - nature.com

    Scientists chart how exercise affects the body

    Connectivity modelling in conservation science: a comparative evaluation