Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).
Google Scholar
Phillips, A. J., Anderson, V. L., Robertson, E. J., Secombes, C. J. & van West, P. New insights into animal pathogenic oomycetes. Trends Microbiol. 16, 13–19 (2008).
Google Scholar
van den Berg, A. H., McLaggan, D., Diéguez-Uribeondo, J. & van West, P. The impact of the water moulds Saprolegnia diclina and Saprolegnia parasitica on natural ecosystems and the aquaculture industry. Fungal Biol. Rev. 27, 33–42 (2013).
van West, P. Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: New challenges for an old problem. Mycologist 20, 99–104 (2006).
Hussein, M. M. A., Hatai, K. & Nomura, T. Saprolegniosis in salmonids and their eggs in Japan. J. Wildl. Dis. 37, 204–207 (2001).
Google Scholar
Pavić, D. et al. Identification and molecular characterization of oomycete isolates from trout farms in Croatia, and their upstream and downstream water environments. Aquaculture 540, 736652 (2021).
Tedesco, P. et al. Evaluation of potential transfer of the pathogen Saprolegnia parasitica between farmed salmonids and wild fish. Pathogens 10, 926 (2021).
Google Scholar
Diéguez-Uribeondo, J., Cerenius, L. & Söderhäll, K. Physiological characterization of Saprolegnia parasitica isolates from brown trout. Aquaculture 140, 247–257 (1996).
Ravasi, D., De Respinis, S. & Wahli, T. Multilocus sequence typing reveals clonality in Saprolegnia parasitica outbreaks. J. Fish Dis. 41, 1653–1665 (2018).
Google Scholar
Bly, J. E., Lawson, L. A., Szalai, A. J. & Clem, L. W. Environmental factors affecting outbreaks of winter saprolegniosis in channel catfish, Ictalurus punctatus (Rafinesque). J. Fish Dis. 16, 541–549 (1993).
Rezinciuc, S., Sandoval-Sierra, J. V., Ruiz-León, Y., Van West, P. & Diéguez-Uribeondo, J. Specialized attachment structure of the fish pathogenic oomycete Saprolegnia parasitica. PLoS ONE 13, 1–17 (2018).
Tandel, R. S. et al. Morphological and molecular characterization of Saprolegnia spp. from Himalayan snow trout, Schizothorax richardsonii: A case study report. Aquaculture 531, 735824 (2021).
Google Scholar
Howe, G. E. & Stehly, G. R. Experimental infection of rainbow trout with Saprolegnia parasitica experimental infection of rainbow trout. J. Aquat. Anim. Health 10, 397–404 (1998).
Dieguez-Uribeondo, J. Adaptation to parasitism of some animal pathogenic Saprolegniaceae. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 122. Acta Universitatis Upsalienis (1995).
Kitancharoen, N., Yuasa, K. & Hatai, K. Effects of pH and temperature on growth of Saprolegnia diclina and S. parasitica isolated from various sources. Mycoscience 37, 385–390 (1996).
Meinelt, T. et al. Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substance of different qualities. Aquat. Toxicol. 83, 93–103 (2007).
Google Scholar
Burr, A. W. & Beakes, G. W. Characterization of zoospore and cyst surface structure in saprophytic and fish pathogenic Saprolegnia species (oomycete fungal protists). Protoplasma 181, 142–163 (1994).
Elameen, A. et al. Genetic analyses of saprolegnia strains isolated from salmonid fish of different geographic origin document the connection between pathogenicity and molecular diversity. J. Fungi 7, 1–13 (2021).
Masigol, H. et al. Taxonomical and functional diversity of Saprolegniales in Anzali lagoon, Iran. Aquat. Ecol. 51, 323–336 (2020).
Singer, D. et al. High-throughput sequencing reveals diverse oomycete communities in oligotrophic peat bog micro-habitat. Fungal Ecol. 23, 42–47 (2016).
Hatai, K. & Hoshiai, G. Mass mortality in cultured coho salmon (Oncorhynchus kisutch) due to Saprolegnia parasitica Coker. J. Wildl. Dis. 28, 532–536 (1992).
Google Scholar
Sarowar, M. N., Cusack, R. & Duston, J. Saprolegnia molecular phylogeny among farmed teleosts in Nova Scotia, Canada. J. Fish Dis. 42, 1745–1760 (2019).
Google Scholar
Sakaguchi, S. O. et al. Molecular identification of water molds (oomycetes) associated with chum salmon eggs from hatcheries in Japan and possible sources of their infection. Aquac. Int. 27, 1739–1749 (2019).
Sandoval-Sierra, J. V., Latif-Eugenin, F., Martín, M. P., Zaror, L. & Diéguez-Uribeondo, J. Saprolegnia species affecting the salmonid aquaculture in Chile and their associations with fish developmental stage. Aquaculture 434, 462–469 (2014).
Amarasiri, M., Furukawa, T., Nakajima, F. & Sei, K. Pathogens and disease vectors/hosts monitoring in aquatic environments: Potential of using eDNA/eRNA based approach. Sci. Total Environ. 796, 148810 (2021).
Google Scholar
Pavić, D. et al. Non-destructive method for detecting Aphanomyces astaci, the causative agent of crayfish plague, on the individual level. J. Invertebr. Pathol. 169, 107274 (2020).
Google Scholar
Sapkota, R. & Nicolaisen, M. An improved high throughput sequencing method for studying oomycete communities. J. Microbiol. Methods 110, 33–39 (2015).
Google Scholar
Strand, D. A. et al. Monitoring a Norwegian freshwater crayfish tragedy: eDNA snapshots of invasion, infection and extinction. J. Appl. Ecol. 56, 1661–1673 (2019).
Google Scholar
Ghosh, S., Straus, D. L., Good, C. & Phuntumart, V. Development and comparison of loop-mediated isothermal amplification with quantitative PCR for the specific detection of Saprolegnia spp. PLoS ONE 16, 1–17 (2021).
Blaya, J., Lloret, E., Santísima-Trinidad, A. B., Ros, M. & Pascual, J. A. Molecular methods (digital PCR and real-time PCR) for the quantification of low copy DNA of Phytophthora nicotianae in environmental samples. Pest Manag. Sci. 72, 747–753 (2016).
Google Scholar
Davison, P. I., Copp, G. H., Créach, V., Vilizzi, L. & Britton, J. R. Application of environmental DNA analysis to inform invasive fish eradication operations. Sci. Nat. 104, 1–7 (2017).
Google Scholar
Tuffs, S. & Oidtmann, B. A comparative study of molecular diagnostic methods designed to detect the crayfish plague pathogen, Aphanomyces astaci. Vet. Microbiol. 153, 343–353 (2011).
Google Scholar
Rusch, J. C. et al. Simultaneous detection of native and invasive crayfish and Aphanomyces astaci from environmental DNA samples in a wide range of habitats in Central Europe. NeoBiota 58, 1–32 (2020).
Hindson, C. M. et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 10, 1003–1005 (2013).
Google Scholar
Hoshino, T. & Inagaki, F. Molecular quantification of environmental DNA using microfluidics and digital PCR. Syst. Appl. Microbiol. 35, 390–395 (2012).
Google Scholar
Pinheiro, L. B. et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84, 1003–1011 (2012).
Google Scholar
Rocchi, S. et al. Quantification of Saprolegnia parasitica in river water using real-time quantitative PCR: From massive fish mortality to tap drinking water. Int. J. Environ. Health Res. 27, 1–10 (2017).
Google Scholar
Gibert, S. et al. Risk assessment of Aphanomyces euteiches root rot disease: Quantification of low inoculum densities in field soils using droplet digital PCR. Eur. J. Plant Pathol. 161, 503–528 (2021).
Google Scholar
Ristaino, J. B., Saville, A. C., Paul, R., Cooper, D. C. & Wei, Q. Detection of Phytophthora infestans by loop-mediated isothermal amplification, real-time LAMP, and droplet digital PCR. Plant Dis. 104, 708–716 (2020).
Google Scholar
Lévesque, C. A. & De Cock, A. W. Molecular phylogeny and taxonomy of the genus Pythium. Mycol. Res. 108, 1363–1383 (2004).
Google Scholar
Oidtmann, B., Geiger, S., Steinbauer, P., Culas, A. & Hoffmann, R. W. Detection of Aphanomyces astaci in North American crayfish by polymerase chain reaction. Dis. Aquat. Organ. 72, 53–64 (2006).
Google Scholar
Sandoval-Sierra, J. V., Martín, M. P. & Diéguez-Uribeondo, J. Species identification in the genus Saprolegnia (Oomycetes): Defining DNA-based molecular operational taxonomic units. Fungal Biol. 118, 559–578 (2013).
Google Scholar
Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 1–11 (2012).
Jain, P. et al. A multivariate approach to investigate the combined biological effects of multiple exposures. J. Epidemiol. Community Health 72, 564–571 (2018).
Google Scholar
Lew, S., Glińska-Lewczuk, K. & Lew, M. The effects of environmental parameters on the microbial activity in peat-bog lakes. PLoS ONE 14, e0224441 (2019).
Google Scholar
Montalva, C. et al. First report of Leptolegnia chapmanii (Peronosporomycetes: Saprolegniales) affecting mosquitoes in central Brazil. J. Invertebr. Pathol. 136, 109–116 (2016).
Google Scholar
Robideau, G. P. et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol. Ecol. Resour. 11, 1002–1011 (2011).
Google Scholar
Catal, M., Erler, F., Fulbright, D. W. & Adams, G. C. Real-time quantitative PCR assays for evaluation of soybean varieties for resistance to the stem and root rot pathogen Phytophthora sojae. Eur. J. Plant Pathol. 137, 859–869 (2013).
Google Scholar
Jiang, R. H. Y. et al. Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica. PLoS Genet. 9, e1003272 (2013).
Google Scholar
Dieguez-Uribeondo, J., Cerenius, L. & Soderhall, K. Saprolegnia parasitica and its virulence on three different species of freshwater crayfish. Aquaculture 120, 219–228 (1994).
Söderhäll, K., Dick, M. W., Clark, G., Fürst, M. & Constantinescu, O. Isolation of Saprolegnia parasitica from the crayfish Astacus leptodactylus. Aquaculture 92, 121–125 (1991).
Bly, J. E. et al. Winter saprolegniosis in channel catfish. Dis. Aquat. Organ. 13, 155–164 (1992).
Gozlan, R. E. et al. Current ecological understanding of fungal-like pathogens of fish: What lies beneath?. Front. Microbiol. 5, 1–16 (2014).
Weyhenmeyer, G. A. et al. Widespread diminishing anthropogenic effects on calcium in freshwaters. Sci. Rep. 9, 1–10 (2019).
Google Scholar
Deacon, J. W. & Donaldson, S. P. Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycol. Res. 97, 1153–1171 (1993).
Google Scholar
Ford, D. C. & Williams, P. W. Karst Hydrogeology and Geomorphology (Wiley, 2007).
Baldisserotto, B., Chowdhury, M. J. & Wood, C. M. Effects of dietary calcium and cadmium on cadmium accumulation, calcium and cadmium uptake from the water, and their interactions in juvenile rainbow trout. Aquat. Toxicol. 72, 99–117 (2005).
Google Scholar
Barszcz, A. A., Siemianowska, E., Sidoruk, M. & Skibniewska, K. A. Influence of farming technology on bioaccumulation of calcium, magnesium and sodium in muscle tissue of rainbow trout (Oncorhynchus mykiss Walbaum). Environ. Prot. Nat. Resour. 25, 15–19 (2014).
Ali, E. H. Morphological and biochemical alterations of oomycete fish pathogen Saprolegnia parasitica as affected by salinity, ascorbic acid and their synergistic action. Mycopathologia 159, 231–243 (2005).
Google Scholar
Schuler, M. S. et al. Regulations are needed to protect freshwater ecosystems from salinization. Philos. Trans. R. Soc. B 374, 20180019 (2019).
Google Scholar
Boisen, A. M. Z., Amstrup, J., Novak, I. & Grosell, M. Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio). Biochim. Biophys. Acta 1618, 207–218 (2003).
Google Scholar
Marquis, R. E., Clock, S. A. & Mota-Meira, M. Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol. Rev. 26, 493–510 (2003).
Google Scholar
Mendes, G. et al. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity. Appl. Environ. Microbiol. 80, 3081–3085 (2014).
Google Scholar
Camargo, J. A. Fluoride toxicity to aquatic organisms: A review. Chemosphere 50, 251–264 (2003).
Google Scholar
Min, H., Hatai, K. & Bai, S. Some inhibitory effects of chitosan on fish-pathogenic oomycete, Saprolegnia parasitica. Fish Pathol. 29, 73–77 (1998).
Liu, Y. et al. Deciphering microbial landscapes of fish eggs to mitigate emerging diseases. ISME J. 8, 2002–2014 (2014).
Google Scholar
‘Directive 2010/63/EU of the European Parliament and of the Council on the protection of animals used for scientific purposes’. Off. J. Eur. Union L276, 33 (2010).
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Google Scholar
Gouy, M., Guindon, S. & Gascuel, O. Sea view version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).
Google Scholar
Hall, T., Biosciences, I. & Carlsbad, C. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2, 60–61 (2011).
Source: Ecology - nature.com