in

Uncovering major types of deforestation frontiers across the world’s tropical dry woodlands

  • IPBES The IPBES Assessment Report on Land Degradation and Restoration (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2018).

  • Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).

    CAS 
    Article 

    Google Scholar 

  • The State of the World’s Forests 2020. Forests, Biodiversity and People (FAO and UNEP, 2020).

  • Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).

    Article 

    Google Scholar 

  • Geist, H. J. & Lambin, E. F. What Drives Tropical Deforestation? LUCC Report Series 4 (LUCC International Project Office, 2001).

  • Austin, K. G., González-Roglich, M., Schaffer-Smith, D., Schwantes, A. M. & Swenson, J. J. Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers. Environ. Res. Lett. 12, 054009 (2017).

    Article 

    Google Scholar 

  • Graesser, J., Ramankutty, N. & Coomes, O. T. Increasing expansion of large-scale crop production onto deforested land in sub-Andean South America. Environ. Res. Lett. 13, 084021 (2018).

    Article 

    Google Scholar 

  • Meyfroidt, P. et al. Middle-range theories of land system change. Glob. Environ. Change 53, 52–67 (2018).

    Article 

    Google Scholar 

  • Verburg, P. H. et al. Land system science and sustainable development of the Earth system: a global land project perspective. Anthropocene 12, 29–41 (2015).

    Article 

    Google Scholar 

  • Václavík, T. et al. Investigating potential transferability of place-based research in land system science. Environ. Res. Lett. 11, 095002 (2016).

    Article 

    Google Scholar 

  • Stocks, G., Seales, L., Paniagua, F., Maehr, E. & Bruna, E. M. The geographical and institutional distribution of ecological research in the tropics. Biotropica 40, 397–404 (2008).

    Article 

    Google Scholar 

  • Schröder, J. M., Ávila Rodríguez, L. P. & Günter, S. Research trends: tropical dry forests: the neglected research agenda? For. Policy Econ. 122, 102333 (2021).

    Article 

    Google Scholar 

  • Rodrigues, A. S. L. et al. Boom-and-bust development patterns across the Amazon deforestation frontier. Science 324, 1435–1437 (2009).

    CAS 
    Article 

    Google Scholar 

  • de Jong, E. B. P., Knippenberg, L. & Bakker, L. New frontiers: an enriched perspective on extraction frontiers in Indonesia. Crit. Asian Stud. 49, 330–348 (2017).

    Article 

    Google Scholar 

  • Tyukavina, A. et al. Congo Basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 4, eaat2993 (2018).

    Article 

    Google Scholar 

  • Pacheco, P. et al. Deforestation Fronts: Drivers and Responses in a Changing World (WWF, 2021).

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS 
    Article 

    Google Scholar 

  • Oberlack, C. et al. Archetype analysis in sustainability research: meanings, motivations, and evidence-based policy making. Ecol. Soc. https://doi.org/10.5751/ES-10747-240226 (2019).

  • Sietz, D. et al. Archetype analysis in sustainability research: methodological portfolio and analytical frontiers. Ecol. Soc. https://doi.org/10.5751/ES-11103-240334 (2019).

  • Václavík, T., Lautenbach, S., Kuemmerle, T. & Seppelt, R. Mapping global land system archetypes. Glob. Environ. Change 23, 1637–1647 (2013).

    Article 

    Google Scholar 

  • Vallejos, M. et al. Social-ecological functional types: connecting people and ecosystems in the Argentine Chaco. Ecosystems 23, 471–484 (2020).

    Article 

    Google Scholar 

  • Oberlack, C., Tejada, L., Messerli, P., Rist, S. & Giger, M. Sustainable livelihoods in the global land rush? Archetypes of livelihood vulnerability and sustainability potentials. Glob. Environ. Change 41, 153–171 (2016).

    Article 

    Google Scholar 

  • Miles, L. et al. A global overview of the conservation status of tropical dry forests. J. Biogeogr. 33, 491–505 (2006).

    Article 

    Google Scholar 

  • Pennington, R. T., Lehmann, C. E. R. & Rowland, L. M. Tropical savannas and dry forests. Curr. Biol. 28, R541–R545 (2018).

    CAS 
    Article 

    Google Scholar 

  • Ribeiro, N. S., Katerere, Y., Chirwa, P. W. & Grundy, I. M. in Miombo Woodlands in a Changing Environment: Securing the Resilience and Sustainability of People and Woodlands (eds Ribeiro, N. S. et al.) 1–8 (Springer, 2020).

  • Murphy, B. P., Andersen, A. N. & Parr, C. L. The underestimated biodiversity of tropical grassy biomes. Philos. Trans. R. Soc. B 371, 20150319 (2016).

    Article 

    Google Scholar 

  • Chidumayo, E. & Marunda, C. in The Dry Forests and Woodlands of Africa (eds Chidumayo, E. N. & Gumbo, D.) 1–9 (Earthscan, 2010).

  • Gasparri, N. I. & Grau, H. R. Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972–2007). For. Ecol. Manag. 258, 913–921 (2009).

    Article 

    Google Scholar 

  • Miranda, J., Börner, J., Kalkuhl, M. & Soares-Filho, B. Land speculation and conservation policy leakage in Brazil. Environ. Res. Lett. 14, 045006 (2019).

    Article 

    Google Scholar 

  • Ingalls, M. L., Meyfroidt, P., To, P. X., Kenney-Lazar, M. & Epprecht, M. The transboundary displacement of deforestation under REDD+: problematic intersections between the trade of forest-risk commodities and land grabbing in the Mekong region. Glob. Environ. Change 50, 255–267 (2018).

    Article 

    Google Scholar 

  • Davis, K. F. et al. Tropical forest loss enhanced by large-scale land acquisitions. Nat. Geosci. 13, 482–488 (2020).

    CAS 
    Article 

    Google Scholar 

  • Ordway, E. M., Asner, G. P. & Lambin, E. F. Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environ. Res. Lett. 12, 044015 (2017).

    Article 

    Google Scholar 

  • Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).

    Article 

    Google Scholar 

  • Sunderland, T. et al. Global dry forests: a prologue. Int. For. Rev. 17, 1–9 (2015).

    Google Scholar 

  • Grau, H. R. & Aide, M. Globalization and land-use transitions in Latin America. Ecol. Soc. https://doi.org/10.5751/es-02559-130216 (2008).

  • le Polain de Waroux, Y. et al. Rents, actors, and the expansion of commodity frontiers in the Gran Chaco. Ann. Am. Assoc. Geogr. 108, 204–225 (2018).

    Google Scholar 

  • Romero-Muñoz, A. et al. Fires scorching Bolivia’s Chiquitano forest. Science 366, 1082 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hoang, N. T. & Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol. 5, 845–853 (2021).

    Article 

    Google Scholar 

  • Eigenbrod, F. et al. Identifying agricultural frontiers for modeling global cropland expansion. One Earth 3, 504–514 (2020).

    Article 

    Google Scholar 

  • Nolte, C., le Polain de Waroux, Y., Munger, J., Reis, T. N. P. & Lambin, E. F. Conditions influencing the adoption of effective anti-deforestation policies in South America’s commodity frontiers. Glob. Environ. Change 43, 1–14 (2017).

    Article 

    Google Scholar 

  • Volante, J. N. & Seghezzo, L. Can’t see the forest for the trees: can declining deforestation trends in the Argentinian Chaco region be ascribed to efficient law enforcement? Ecol. Econ. 146, 408–413 (2018).

    Article 

    Google Scholar 

  • Chirwa, P. W. & Adeyemi, O. in Zero Hunger: Encyclopedia of the UN Sustainable Development Goals (eds Leal Filho, W. et al.) 1–15 (Springer, 2019).

  • Pacheco, P. Actor and frontier types in the Brazilian Amazon: assessing interactions and outcomes associated with frontier expansion. Geoforum 43, 864–874 (2012).

    Article 

    Google Scholar 

  • García, A. K., Meyfroidt, P., Abeygunawardane, D. & Sitoe, A. Waves and legacies: the making of an investment frontier in Niassa, Mozambique. Ecol. Soc. 27, 40 (2022).

  • Leal, I. R., Da Silva, J. M. C., Tabarelli, M. & Lacher, T. E.Jr Changing the course of biodiversity conservation in the Caatinga of northeastern Brazil. Conserv. Biol. 19, 701–706 (2005).

    Article 

    Google Scholar 

  • Osabuohien, E. S. & Karakara, A. A. in The Palgrave Handbook of Agricultural and Rural Development in Africa (ed. Osabuohien, E. S.) 627–640 (Springer, 2020).

  • Gautier, D., Garcia, C., Negi, S. & Wardell, D. A. The limits and failures of existing forest governance standards in semi-arid contexts. Int. For. Rev. 17, 114–126 (2015).

    Google Scholar 

  • Brandt, M. et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587, 78–82 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bastin, J. F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).

    CAS 
    Article 

    Google Scholar 

  • Fagan, M. E. A lesson unlearned? Underestimating tree cover in drylands biases global restoration maps. Glob. Change Biol. 26, 4679–4690 (2020).

    CAS 
    Article 

    Google Scholar 

  • Bey, A. & Meyfroidt, P. Improved land monitoring to assess large-scale tree plantation expansion and trajectories in Northern Mozambique. Environ. Res. Commun. https://doi.org/10.1088/2515-7620/ac26ab (2021).

  • Harris, N., Goldman, E. D. & Gibbes, S. Spatial Database of Planted Trees (SDPT Version 1.0) (World Resources Institute, accessed 21 November 2021).

  • Timberlake, W. J., Chidumayo, E. & Sawadogo, L. in The Dry Forests and Woodlands of Africa (eds Chidumayo, E. N. & Gumbo, D.) 11–41 (Earthscan, 2010).

  • Portillo-Quintero, C. A. & Sánchez-Azofeifa, G. A. Extent and conservation of tropical dry forests in the Americas. Biol. Conserv. 143, 144–155 (2010).

    Article 

    Google Scholar 

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Article 

    Google Scholar 

  • Murphy, P. G. & Lugo, A. E. Ecology of tropical dry forest. Annu. Rev. Ecol. Syst. 17, 67–88 (1986).

    Article 

    Google Scholar 

  • Lock, J. M. in Neotropical Savannas and Seasonally Dry Forests (eds Pennington, R. T. & Ratter, J. A.) 449–467 (CRC Press, 2006).

  • Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl Acad. Sci. USA 113, 838–846 (2016).

    CAS 
    Article 

    Google Scholar 

  • Baldi, G., Veron, S. R. & Jobbagy, E. G. The imprint of humans on landscape patterns and vegetation functioning in the dry subtropics. Glob. Change Biol. 19, 441–458 (2013).

    Article 

    Google Scholar 

  • Lahsen, M., Bustamante, M. M. C. & Dalla-Nora, E. L. Undervaluing and overexploiting the Brazilian Cerrado at our peril. Environ. Sci. Policy Sustain. Dev. 58, 4–15 (2016).

    Article 

    Google Scholar 

  • Sitoe, A., Chidumayo, E. & Alberto, M. in The Dry Forests and Woodlands of Africa (eds Chidumayo, E. N. & Gumbo, D.) 131–153 (Earthscan, 2010).

  • Ozdogan, M. & Woodcock, C. E. Resolution dependent errors in remote sensing of cultivated areas. Remote Sens. Environ. 103, 203–217 (2006).

    Article 

    Google Scholar 

  • Estes, L. et al. A large-area, spatially continuous assessment of land cover map error and its impact on downstream analyses. Glob. Change Biol. 24, 322–337 (2018).

    Article 

    Google Scholar 

  • Dlamini, W. M. Mapping forest and woodland loss in Swaziland: 1990–2015. Remote Sens. Appl. Soc. Environ. 5, 45–53 (2017).

    Google Scholar 

  • Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation: tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience 52, 143–150 (2002).

    Article 

    Google Scholar 

  • Walker, R. Mapping process to pattern in the landscape change of the Amazonian frontier. Ann. Assoc. Am. Geogr. 93, 376–398 (2003).

    Article 

    Google Scholar 

  • Baumann, M. et al. Frontier metrics for a process-based understanding of deforestation dynamics. Preprint at EarthArXiv https://doi.org/10.31223/X55S7J (2022).

  • Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS 
    Article 

    Google Scholar 

  • Lesiv, M. et al. Estimating the global distribution of field size using crowdsourcing. Glob. Change Biol. 25, 174–186 (2019).

    Article 

    Google Scholar 

  • Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).

    CAS 
    Article 

    Google Scholar 

  • Global Agro-Ecological Zones (GAEZ v3. 0) (IIASA and FAO, accessed 24 July 2020).

  • Heinimann, A. et al. A global view of shifting cultivation: recent, current, and future extent. PLoS ONE 12, e0184479 (2017).

    Article 
    CAS 

    Google Scholar 

  • Shamseer, L. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 349, g7647 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Invasions of an obligate asexual daphnid species support the nearly neutral theory

    Succession comprises a sequence of threshold-induced community assembly processes towards multidiversity