IPBES The IPBES Assessment Report on Land Degradation and Restoration (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2018).
Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).
Google Scholar
The State of the World’s Forests 2020. Forests, Biodiversity and People (FAO and UNEP, 2020).
Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).
Google Scholar
Geist, H. J. & Lambin, E. F. What Drives Tropical Deforestation? LUCC Report Series 4 (LUCC International Project Office, 2001).
Austin, K. G., González-Roglich, M., Schaffer-Smith, D., Schwantes, A. M. & Swenson, J. J. Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers. Environ. Res. Lett. 12, 054009 (2017).
Google Scholar
Graesser, J., Ramankutty, N. & Coomes, O. T. Increasing expansion of large-scale crop production onto deforested land in sub-Andean South America. Environ. Res. Lett. 13, 084021 (2018).
Google Scholar
Meyfroidt, P. et al. Middle-range theories of land system change. Glob. Environ. Change 53, 52–67 (2018).
Google Scholar
Verburg, P. H. et al. Land system science and sustainable development of the Earth system: a global land project perspective. Anthropocene 12, 29–41 (2015).
Google Scholar
Václavík, T. et al. Investigating potential transferability of place-based research in land system science. Environ. Res. Lett. 11, 095002 (2016).
Google Scholar
Stocks, G., Seales, L., Paniagua, F., Maehr, E. & Bruna, E. M. The geographical and institutional distribution of ecological research in the tropics. Biotropica 40, 397–404 (2008).
Google Scholar
Schröder, J. M., Ávila Rodríguez, L. P. & Günter, S. Research trends: tropical dry forests: the neglected research agenda? For. Policy Econ. 122, 102333 (2021).
Google Scholar
Rodrigues, A. S. L. et al. Boom-and-bust development patterns across the Amazon deforestation frontier. Science 324, 1435–1437 (2009).
Google Scholar
de Jong, E. B. P., Knippenberg, L. & Bakker, L. New frontiers: an enriched perspective on extraction frontiers in Indonesia. Crit. Asian Stud. 49, 330–348 (2017).
Google Scholar
Tyukavina, A. et al. Congo Basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 4, eaat2993 (2018).
Google Scholar
Pacheco, P. et al. Deforestation Fronts: Drivers and Responses in a Changing World (WWF, 2021).
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Google Scholar
Oberlack, C. et al. Archetype analysis in sustainability research: meanings, motivations, and evidence-based policy making. Ecol. Soc. https://doi.org/10.5751/ES-10747-240226 (2019).
Sietz, D. et al. Archetype analysis in sustainability research: methodological portfolio and analytical frontiers. Ecol. Soc. https://doi.org/10.5751/ES-11103-240334 (2019).
Václavík, T., Lautenbach, S., Kuemmerle, T. & Seppelt, R. Mapping global land system archetypes. Glob. Environ. Change 23, 1637–1647 (2013).
Google Scholar
Vallejos, M. et al. Social-ecological functional types: connecting people and ecosystems in the Argentine Chaco. Ecosystems 23, 471–484 (2020).
Google Scholar
Oberlack, C., Tejada, L., Messerli, P., Rist, S. & Giger, M. Sustainable livelihoods in the global land rush? Archetypes of livelihood vulnerability and sustainability potentials. Glob. Environ. Change 41, 153–171 (2016).
Google Scholar
Miles, L. et al. A global overview of the conservation status of tropical dry forests. J. Biogeogr. 33, 491–505 (2006).
Google Scholar
Pennington, R. T., Lehmann, C. E. R. & Rowland, L. M. Tropical savannas and dry forests. Curr. Biol. 28, R541–R545 (2018).
Google Scholar
Ribeiro, N. S., Katerere, Y., Chirwa, P. W. & Grundy, I. M. in Miombo Woodlands in a Changing Environment: Securing the Resilience and Sustainability of People and Woodlands (eds Ribeiro, N. S. et al.) 1–8 (Springer, 2020).
Murphy, B. P., Andersen, A. N. & Parr, C. L. The underestimated biodiversity of tropical grassy biomes. Philos. Trans. R. Soc. B 371, 20150319 (2016).
Google Scholar
Chidumayo, E. & Marunda, C. in The Dry Forests and Woodlands of Africa (eds Chidumayo, E. N. & Gumbo, D.) 1–9 (Earthscan, 2010).
Gasparri, N. I. & Grau, H. R. Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972–2007). For. Ecol. Manag. 258, 913–921 (2009).
Google Scholar
Miranda, J., Börner, J., Kalkuhl, M. & Soares-Filho, B. Land speculation and conservation policy leakage in Brazil. Environ. Res. Lett. 14, 045006 (2019).
Google Scholar
Ingalls, M. L., Meyfroidt, P., To, P. X., Kenney-Lazar, M. & Epprecht, M. The transboundary displacement of deforestation under REDD+: problematic intersections between the trade of forest-risk commodities and land grabbing in the Mekong region. Glob. Environ. Change 50, 255–267 (2018).
Google Scholar
Davis, K. F. et al. Tropical forest loss enhanced by large-scale land acquisitions. Nat. Geosci. 13, 482–488 (2020).
Google Scholar
Ordway, E. M., Asner, G. P. & Lambin, E. F. Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environ. Res. Lett. 12, 044015 (2017).
Google Scholar
Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).
Google Scholar
Sunderland, T. et al. Global dry forests: a prologue. Int. For. Rev. 17, 1–9 (2015).
Grau, H. R. & Aide, M. Globalization and land-use transitions in Latin America. Ecol. Soc. https://doi.org/10.5751/es-02559-130216 (2008).
le Polain de Waroux, Y. et al. Rents, actors, and the expansion of commodity frontiers in the Gran Chaco. Ann. Am. Assoc. Geogr. 108, 204–225 (2018).
Romero-Muñoz, A. et al. Fires scorching Bolivia’s Chiquitano forest. Science 366, 1082 (2019).
Google Scholar
Hoang, N. T. & Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol. 5, 845–853 (2021).
Google Scholar
Eigenbrod, F. et al. Identifying agricultural frontiers for modeling global cropland expansion. One Earth 3, 504–514 (2020).
Google Scholar
Nolte, C., le Polain de Waroux, Y., Munger, J., Reis, T. N. P. & Lambin, E. F. Conditions influencing the adoption of effective anti-deforestation policies in South America’s commodity frontiers. Glob. Environ. Change 43, 1–14 (2017).
Google Scholar
Volante, J. N. & Seghezzo, L. Can’t see the forest for the trees: can declining deforestation trends in the Argentinian Chaco region be ascribed to efficient law enforcement? Ecol. Econ. 146, 408–413 (2018).
Google Scholar
Chirwa, P. W. & Adeyemi, O. in Zero Hunger: Encyclopedia of the UN Sustainable Development Goals (eds Leal Filho, W. et al.) 1–15 (Springer, 2019).
Pacheco, P. Actor and frontier types in the Brazilian Amazon: assessing interactions and outcomes associated with frontier expansion. Geoforum 43, 864–874 (2012).
Google Scholar
García, A. K., Meyfroidt, P., Abeygunawardane, D. & Sitoe, A. Waves and legacies: the making of an investment frontier in Niassa, Mozambique. Ecol. Soc. 27, 40 (2022).
Leal, I. R., Da Silva, J. M. C., Tabarelli, M. & Lacher, T. E.Jr Changing the course of biodiversity conservation in the Caatinga of northeastern Brazil. Conserv. Biol. 19, 701–706 (2005).
Google Scholar
Osabuohien, E. S. & Karakara, A. A. in The Palgrave Handbook of Agricultural and Rural Development in Africa (ed. Osabuohien, E. S.) 627–640 (Springer, 2020).
Gautier, D., Garcia, C., Negi, S. & Wardell, D. A. The limits and failures of existing forest governance standards in semi-arid contexts. Int. For. Rev. 17, 114–126 (2015).
Brandt, M. et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587, 78–82 (2020).
Google Scholar
Bastin, J. F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).
Google Scholar
Fagan, M. E. A lesson unlearned? Underestimating tree cover in drylands biases global restoration maps. Glob. Change Biol. 26, 4679–4690 (2020).
Google Scholar
Bey, A. & Meyfroidt, P. Improved land monitoring to assess large-scale tree plantation expansion and trajectories in Northern Mozambique. Environ. Res. Commun. https://doi.org/10.1088/2515-7620/ac26ab (2021).
Harris, N., Goldman, E. D. & Gibbes, S. Spatial Database of Planted Trees (SDPT Version 1.0) (World Resources Institute, accessed 21 November 2021).
Timberlake, W. J., Chidumayo, E. & Sawadogo, L. in The Dry Forests and Woodlands of Africa (eds Chidumayo, E. N. & Gumbo, D.) 11–41 (Earthscan, 2010).
Portillo-Quintero, C. A. & Sánchez-Azofeifa, G. A. Extent and conservation of tropical dry forests in the Americas. Biol. Conserv. 143, 144–155 (2010).
Google Scholar
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).
Google Scholar
Murphy, P. G. & Lugo, A. E. Ecology of tropical dry forest. Annu. Rev. Ecol. Syst. 17, 67–88 (1986).
Google Scholar
Lock, J. M. in Neotropical Savannas and Seasonally Dry Forests (eds Pennington, R. T. & Ratter, J. A.) 449–467 (CRC Press, 2006).
Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl Acad. Sci. USA 113, 838–846 (2016).
Google Scholar
Baldi, G., Veron, S. R. & Jobbagy, E. G. The imprint of humans on landscape patterns and vegetation functioning in the dry subtropics. Glob. Change Biol. 19, 441–458 (2013).
Google Scholar
Lahsen, M., Bustamante, M. M. C. & Dalla-Nora, E. L. Undervaluing and overexploiting the Brazilian Cerrado at our peril. Environ. Sci. Policy Sustain. Dev. 58, 4–15 (2016).
Google Scholar
Sitoe, A., Chidumayo, E. & Alberto, M. in The Dry Forests and Woodlands of Africa (eds Chidumayo, E. N. & Gumbo, D.) 131–153 (Earthscan, 2010).
Ozdogan, M. & Woodcock, C. E. Resolution dependent errors in remote sensing of cultivated areas. Remote Sens. Environ. 103, 203–217 (2006).
Google Scholar
Estes, L. et al. A large-area, spatially continuous assessment of land cover map error and its impact on downstream analyses. Glob. Change Biol. 24, 322–337 (2018).
Google Scholar
Dlamini, W. M. Mapping forest and woodland loss in Swaziland: 1990–2015. Remote Sens. Appl. Soc. Environ. 5, 45–53 (2017).
Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation: tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience 52, 143–150 (2002).
Google Scholar
Walker, R. Mapping process to pattern in the landscape change of the Amazonian frontier. Ann. Assoc. Am. Geogr. 93, 376–398 (2003).
Google Scholar
Baumann, M. et al. Frontier metrics for a process-based understanding of deforestation dynamics. Preprint at EarthArXiv https://doi.org/10.31223/X55S7J (2022).
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
Google Scholar
Lesiv, M. et al. Estimating the global distribution of field size using crowdsourcing. Glob. Change Biol. 25, 174–186 (2019).
Google Scholar
Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).
Google Scholar
Global Agro-Ecological Zones (GAEZ v3. 0) (IIASA and FAO, accessed 24 July 2020).
Heinimann, A. et al. A global view of shifting cultivation: recent, current, and future extent. PLoS ONE 12, e0184479 (2017).
Google Scholar
Shamseer, L. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 349, g7647 (2015).
Google Scholar
Source: Ecology - nature.com