Richardson, D.M., & Rundel, P.W. Ecology and biogeography of Pinus: An introduction. in Ecology and Biogeography of Pinus (Richardson, D.M. Ed.). 3–40. (Cambridge Press, 1998).
Keeley, J. E. Ecology and evolution of pine life histories. Ann. For. Sci. 69, 445–453 (2012).
Google Scholar
Agee, J.K. Fire and pine ecosystems. in Ecology and Biogeography of Pinus (Richardson, D.M. Ed.). 193–217. (Cambridge Press, 1998).
Keeley, J.E., & Zedler, P.H. Evolution of life histories in Pinus. in Ecology and Biogeography of Pinus (Richardson, D.M. Ed.). 219–251. (Cambridge Press, 1998).
Pausas, J. G., Bradstock, R., Keith, D. A. & Keeley, J. E. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85, 1085–1100 (2004).
Google Scholar
Hare, R. C. Contribution of bark to fire resistance of southern trees. J. For. 63, 248–251 (1965).
Jackson, J. F., Adams, D. C. & Jackson, U. B. Allometry of constitutive defense: A model and a comparative test with tree bark and fire regime. Am. Nat. 153, 614–632 (1999).
Google Scholar
Stephens, S. L. & Libby, W. J. Anthropogenic fire and bark thickness in coastal and island pine populations from Alta and Baja California. J. Biogeogr. 33, 648–652 (2006).
Google Scholar
Chapman, H. H. Is the longleaf type a climax?. Ecology 13, 328–334 (1932).
Google Scholar
Pile, L. S., Wang, G. G., Knapp, B. O., Liu, G. & Yu, D. Comparing morphology and physiology of southeastern US Pinus seedlings: Implications for adaptation to surface fire regimes. Ann. For. Sci. 74, 68 (2017).
Google Scholar
Rodríguez-Trejo, D. A. & Fulé, P. Z. Fire ecology of Mexican pines and a fire management proposal. Int. J. Wildl. Fire 12, 23–37 (2003).
Google Scholar
Pausas, J. G. Bark thickness and fire regime. Funct. Ecol. 29, 315–327 (2015).
Google Scholar
Little, S. & Mergen, F. External and internal changes associated with basal-crook formation in pitch and shortleaf pines. For. Sci. 12, 268–275 (1966).
Kolström, T. & Kellomäki, S. Tree survival in wildfires. Silva Fenn. 27, 277–281 (1993).
Google Scholar
Schwilk, D. W. & Ackerly, D. D. Flammability and serotiny as strategies: Correlated evolution in pines. Oikos 94, 326–236 (2001).
Google Scholar
Reyes, O. & Casal, M. Effect of high temperatures on cone opening and on the release and viability of Pinus pinaster and P. radiata seeds in NW Spain. Ann. For. Sci. 59, 327–334 (2002).
Google Scholar
Pausas, J. G. & Keeley, J. E. Epicormic resprouting in fire-prone ecosystems. Trends Plant Sci. 22, 1008–1015 (2017).
Google Scholar
Fonda, R. W., Bellanger, L. A. & Burley, L. L. Burning characteristics of western conifer needles. Northwest Sci. 72, 1–9 (1998).
Fonda, R. W. Burning characteristics of needles from eight pine species. For. Sci. 47, 390–396 (2001).
Anderson, H. E. Forest fuel ignitability. Fire Tech. 6, 312–319 (1970).
Google Scholar
Martin, R.E., et al. Assessing the flammability of domestic and wildland vegetation. in Proceedings of the 12th Conference Fire and Forest Meteorology. Jekyll Island. 130–137. (1993)
Varner, J. M., Kane, J. M., Kreye, J. K. & Engber, E. The flammability of forest and wildland litter: A synthesis. Curr. For. Rep. 1, 91–99 (2015).
Fernandes, P. M. & Cruz, M. G. Plant flammability experiments offer limited insight into vegetation–fire dynamics interactions. New Phytol. 194, 606–609 (2012).
Google Scholar
Wenk, E. S., Wang, G. G. & Walker, J. L. Within-stand variation in understorey vegetation affects fire behaviour in longleaf pine xeric sandhills. Int. J. Wildl. Fire 20, 866–875 (2012).
Google Scholar
Whelan, A. W., Bigelow, S. W. & O’Brien, J. J. Overstory longleaf pines and hardwoods create diverse patterns of energy release and fire effects during prescribed fire. Front. For. Glob. Change. 4, 25 (2021).
Google Scholar
Mutch, R. W. Wildland fires and ecosystems—A hypothesis. Ecology 51, 1046–1051 (1970).
Google Scholar
Troumbis, A. S. & Trabaud, L. Some questions about flammability in fire ecology. Acta Oecol. 10, 167–175 (1989).
Midgley, J. J. Flammability is not selected for, it emerges. Aust. J. Bot. 61, 102–106 (2013).
Google Scholar
Snyder, J. R. The role of fire: Mutch ado about nothing?. Oikos 43, 404–405 (1984).
Google Scholar
Bond, W. J. & Midgley, J. J. Kill thy neighbour: An individualistic argument for theevolution of flammability. Oikos 73, 79–85 (1995).
Google Scholar
Gagnon, P. R. et al. Does pyrogenicity protect burning plants?. Ecology 91, 3481–3486 (2010).
Google Scholar
Vines, R. G. Heat transfer through bark, and the resistance of trees to fire. Aust. J. Bot. 16, 499–514 (1968).
Google Scholar
Harmon, M. E. Survival of trees after low-intensity surface fires in Great Smoky Mountains National Park. Ecology 65, 796–802 (1984).
Google Scholar
Schwilk, D. W., Gaetani, M. S. & Poulos, H. M. Oak bark allometry and fire survival strategies in the Chihuahuan Desert Sky Islands, Texas, USA. PLoS ONE 8, e79285 (2013).
Google Scholar
Stevens, J., Kling, M., Schwilk, D., Varner, J. M. & Kane, J. M. Biogeography of fire regimes in western US conifer forests: a trait-based approach. Glob. Ecol. Biogeogr. 29, 944–955 (2020).
Google Scholar
Rosell, J. A. Bark thickness across the angiosperms: More than just fire. New Phytol. 211, 90–102 (2016).
Google Scholar
Kane, J. M., Varner, J. M. & Hiers, J. K. The burning characteristics of southeastern oaks: discriminating fire facilitators from fire impeders. For. Ecol. Manag. 256, 2039–2045 (2008).
Google Scholar
Engber, E. A. & Varner, J. M. Patterns of flammability of the California oaks: The role of leaf traits. Can. J. For. Res. 42, 1965–1975 (2012).
Google Scholar
Guyette, R. P., Stambaugh, M. C., Dey, D. C. & Muzika, R. Predicting fire frequency with chemistry and climate. Ecosystems 15, 322–335 (2012).
Google Scholar
Stambaugh, M.C., Varner, J.M., & Jackson, S.T. Biogeography: An interweave of climate, fire, and humans. in Ecological Restoration and Management of Longleaf Pine Forests (Kirkman, K., Jack, S. B. Eds.). 17–38. (CRC Press, 2017).
Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).
Google Scholar
Schwilk, D. W. & Caprio, A. C. Scaling from leaf traits to fire behavior: community composition predicts fire severity in a temperate forest. J. Ecol. 99, 970–980 (2011).
Google Scholar
Ormeño, E. et al. The relationship between terpenes and flammability of leaf litter. For. Ecol. Manag. 257, 471–482 (2009).
Google Scholar
Mirov, N. T. The terpenes (in relation to the biology of genus Pinus). Ann. Rev. Biochem. 17, 521–540 (1948).
Google Scholar
Mitić, Z. S. et al. Needle terpenes as chemotaxonomic markers in Pinus: Subsections Pinus and Pinaster. Chem. Biodivers. 14, e1600453 (2017).
Google Scholar
Baradat, P. & Yazdani, R. Genetic expression for monoterpenes in clones of Pinus sylvestris grown on different sites. Scand. J. For. Res. 3, 25–36 (1987).
Google Scholar
Hanover, J. W. Applications of terpene analysis in forest genetics. New For. 6, 159–178 (1992).
Google Scholar
He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).
Google Scholar
Saladin, B. et al. Fossils matter: Improved estimates of divergence times in Pinus reveal older diversification. Evol. Biol. 17, 95 (2017).
Kreye, J. K. et al. Effects of solar heating on the moisture dynamics of forest floor litter in humid environments: Composition, structure, and position matter. Can. J. For. Res. 48, 1331–1342 (2018).
Google Scholar
Ganteaume, A., Jappiot, M., Curt, T., Lampin, C. & Borgniet, L. Flammability of litter sampled according to two different methods: Comparison of results in laboratory experiments. Int. J. Wildl. Fire 23, 1061–1075 (2014).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019). https://www.R-project.org/.
Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
Google Scholar
Orme, D., et al. Caper: Comparative Analyses of Phylogenetics and Evolution in R. Version 1.0.1. https://CRAN.R-project.org/package=caper. (2018).
Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).
Google Scholar
Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712–726 (2002).
Google Scholar
Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn. (2019).
Little, E.L. Atlas of United States Trees. Vol. 1. Conifers and Important Hardwoods. 1–320. (Miscellaneous Publication 1146, USDA, Forest Service, 1971).
Prasad, A.M. & Iverson, L.R. Little’s Range and FIA Importance Value Database for 135 Eastern US Tree Species. http://www.fs.fed.us/ne/delaware/4153/global/littlefia/index.html. (Northeastern Research Station, USDA Forest Service).
Source: Ecology - nature.com