in

Understanding flammability and bark thickness in the genus Pinus using a phylogenetic approach

  • Richardson, D.M., & Rundel, P.W. Ecology and biogeography of Pinus: An introduction. in Ecology and Biogeography of Pinus (Richardson, D.M. Ed.). 3–40. (Cambridge Press, 1998).

  • Keeley, J. E. Ecology and evolution of pine life histories. Ann. For. Sci. 69, 445–453 (2012).

    Article 

    Google Scholar 

  • Agee, J.K. Fire and pine ecosystems. in Ecology and Biogeography of Pinus (Richardson, D.M. Ed.). 193–217. (Cambridge Press, 1998).

  • Keeley, J.E., & Zedler, P.H. Evolution of life histories in Pinus. in Ecology and Biogeography of Pinus (Richardson, D.M. Ed.). 219–251. (Cambridge Press, 1998).

  • Pausas, J. G., Bradstock, R., Keith, D. A. & Keeley, J. E. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85, 1085–1100 (2004).

    Article 

    Google Scholar 

  • Hare, R. C. Contribution of bark to fire resistance of southern trees. J. For. 63, 248–251 (1965).

    Google Scholar 

  • Jackson, J. F., Adams, D. C. & Jackson, U. B. Allometry of constitutive defense: A model and a comparative test with tree bark and fire regime. Am. Nat. 153, 614–632 (1999).

    PubMed 
    Article 

    Google Scholar 

  • Stephens, S. L. & Libby, W. J. Anthropogenic fire and bark thickness in coastal and island pine populations from Alta and Baja California. J. Biogeogr. 33, 648–652 (2006).

    Article 

    Google Scholar 

  • Chapman, H. H. Is the longleaf type a climax?. Ecology 13, 328–334 (1932).

    Article 

    Google Scholar 

  • Pile, L. S., Wang, G. G., Knapp, B. O., Liu, G. & Yu, D. Comparing morphology and physiology of southeastern US Pinus seedlings: Implications for adaptation to surface fire regimes. Ann. For. Sci. 74, 68 (2017).

    Article 

    Google Scholar 

  • Rodríguez-Trejo, D. A. & Fulé, P. Z. Fire ecology of Mexican pines and a fire management proposal. Int. J. Wildl. Fire 12, 23–37 (2003).

    Article 

    Google Scholar 

  • Pausas, J. G. Bark thickness and fire regime. Funct. Ecol. 29, 315–327 (2015).

    Article 

    Google Scholar 

  • Little, S. & Mergen, F. External and internal changes associated with basal-crook formation in pitch and shortleaf pines. For. Sci. 12, 268–275 (1966).

    Google Scholar 

  • Kolström, T. & Kellomäki, S. Tree survival in wildfires. Silva Fenn. 27, 277–281 (1993).

    Article 

    Google Scholar 

  • Schwilk, D. W. & Ackerly, D. D. Flammability and serotiny as strategies: Correlated evolution in pines. Oikos 94, 326–236 (2001).

    Article 

    Google Scholar 

  • Reyes, O. & Casal, M. Effect of high temperatures on cone opening and on the release and viability of Pinus pinaster and P. radiata seeds in NW Spain. Ann. For. Sci. 59, 327–334 (2002).

    Article 

    Google Scholar 

  • Pausas, J. G. & Keeley, J. E. Epicormic resprouting in fire-prone ecosystems. Trends Plant Sci. 22, 1008–1015 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fonda, R. W., Bellanger, L. A. & Burley, L. L. Burning characteristics of western conifer needles. Northwest Sci. 72, 1–9 (1998).

    Google Scholar 

  • Fonda, R. W. Burning characteristics of needles from eight pine species. For. Sci. 47, 390–396 (2001).

    Google Scholar 

  • Anderson, H. E. Forest fuel ignitability. Fire Tech. 6, 312–319 (1970).

    CAS 
    Article 

    Google Scholar 

  • Martin, R.E., et al. Assessing the flammability of domestic and wildland vegetation. in Proceedings of the 12th Conference Fire and Forest Meteorology. Jekyll Island. 130–137. (1993)

  • Varner, J. M., Kane, J. M., Kreye, J. K. & Engber, E. The flammability of forest and wildland litter: A synthesis. Curr. For. Rep. 1, 91–99 (2015).

    Google Scholar 

  • Fernandes, P. M. & Cruz, M. G. Plant flammability experiments offer limited insight into vegetation–fire dynamics interactions. New Phytol. 194, 606–609 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Wenk, E. S., Wang, G. G. & Walker, J. L. Within-stand variation in understorey vegetation affects fire behaviour in longleaf pine xeric sandhills. Int. J. Wildl. Fire 20, 866–875 (2012).

    Article 

    Google Scholar 

  • Whelan, A. W., Bigelow, S. W. & O’Brien, J. J. Overstory longleaf pines and hardwoods create diverse patterns of energy release and fire effects during prescribed fire. Front. For. Glob. Change. 4, 25 (2021).

    Article 

    Google Scholar 

  • Mutch, R. W. Wildland fires and ecosystems—A hypothesis. Ecology 51, 1046–1051 (1970).

    Article 

    Google Scholar 

  • Troumbis, A. S. & Trabaud, L. Some questions about flammability in fire ecology. Acta Oecol. 10, 167–175 (1989).

    Google Scholar 

  • Midgley, J. J. Flammability is not selected for, it emerges. Aust. J. Bot. 61, 102–106 (2013).

    Article 

    Google Scholar 

  • Snyder, J. R. The role of fire: Mutch ado about nothing?. Oikos 43, 404–405 (1984).

    Article 

    Google Scholar 

  • Bond, W. J. & Midgley, J. J. Kill thy neighbour: An individualistic argument for theevolution of flammability. Oikos 73, 79–85 (1995).

    Article 

    Google Scholar 

  • Gagnon, P. R. et al. Does pyrogenicity protect burning plants?. Ecology 91, 3481–3486 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Vines, R. G. Heat transfer through bark, and the resistance of trees to fire. Aust. J. Bot. 16, 499–514 (1968).

    Article 

    Google Scholar 

  • Harmon, M. E. Survival of trees after low-intensity surface fires in Great Smoky Mountains National Park. Ecology 65, 796–802 (1984).

    Article 

    Google Scholar 

  • Schwilk, D. W., Gaetani, M. S. & Poulos, H. M. Oak bark allometry and fire survival strategies in the Chihuahuan Desert Sky Islands, Texas, USA. PLoS ONE 8, e79285 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stevens, J., Kling, M., Schwilk, D., Varner, J. M. & Kane, J. M. Biogeography of fire regimes in western US conifer forests: a trait-based approach. Glob. Ecol. Biogeogr. 29, 944–955 (2020).

    Article 

    Google Scholar 

  • Rosell, J. A. Bark thickness across the angiosperms: More than just fire. New Phytol. 211, 90–102 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kane, J. M., Varner, J. M. & Hiers, J. K. The burning characteristics of southeastern oaks: discriminating fire facilitators from fire impeders. For. Ecol. Manag. 256, 2039–2045 (2008).

    Article 

    Google Scholar 

  • Engber, E. A. & Varner, J. M. Patterns of flammability of the California oaks: The role of leaf traits. Can. J. For. Res. 42, 1965–1975 (2012).

    Article 

    Google Scholar 

  • Guyette, R. P., Stambaugh, M. C., Dey, D. C. & Muzika, R. Predicting fire frequency with chemistry and climate. Ecosystems 15, 322–335 (2012).

    Article 

    Google Scholar 

  • Stambaugh, M.C., Varner, J.M., & Jackson, S.T. Biogeography: An interweave of climate, fire, and humans. in Ecological Restoration and Management of Longleaf Pine Forests (Kirkman, K., Jack, S. B. Eds.). 17–38. (CRC Press, 2017).

  • Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).

    Article 

    Google Scholar 

  • Schwilk, D. W. & Caprio, A. C. Scaling from leaf traits to fire behavior: community composition predicts fire severity in a temperate forest. J. Ecol. 99, 970–980 (2011).

    Article 

    Google Scholar 

  • Ormeño, E. et al. The relationship between terpenes and flammability of leaf litter. For. Ecol. Manag. 257, 471–482 (2009).

    Article 

    Google Scholar 

  • Mirov, N. T. The terpenes (in relation to the biology of genus Pinus). Ann. Rev. Biochem. 17, 521–540 (1948).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mitić, Z. S. et al. Needle terpenes as chemotaxonomic markers in Pinus: Subsections Pinus and Pinaster. Chem. Biodivers. 14, e1600453 (2017).

    Article 

    Google Scholar 

  • Baradat, P. & Yazdani, R. Genetic expression for monoterpenes in clones of Pinus sylvestris grown on different sites. Scand. J. For. Res. 3, 25–36 (1987).

    Article 

    Google Scholar 

  • Hanover, J. W. Applications of terpene analysis in forest genetics. New For. 6, 159–178 (1992).

    Article 

    Google Scholar 

  • He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Saladin, B. et al. Fossils matter: Improved estimates of divergence times in Pinus reveal older diversification. Evol. Biol. 17, 95 (2017).

    Google Scholar 

  • Kreye, J. K. et al. Effects of solar heating on the moisture dynamics of forest floor litter in humid environments: Composition, structure, and position matter. Can. J. For. Res. 48, 1331–1342 (2018).

    Article 

    Google Scholar 

  • Ganteaume, A., Jappiot, M., Curt, T., Lampin, C. & Borgniet, L. Flammability of litter sampled according to two different methods: Comparison of results in laboratory experiments. Int. J. Wildl. Fire 23, 1061–1075 (2014).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019). https://www.R-project.org/.

  • Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article 

    Google Scholar 

  • Orme, D., et al. Caper: Comparative Analyses of Phylogenetics and Evolution in R. Version 1.0.1. https://CRAN.R-project.org/package=caper. (2018).

  • Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712–726 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn. (2019).

  • Little, E.L. Atlas of United States Trees. Vol. 1. Conifers and Important Hardwoods. 1–320. (Miscellaneous Publication 1146, USDA, Forest Service, 1971).

  • Prasad, A.M. & Iverson, L.R. Little’s Range and FIA Importance Value Database for 135 Eastern US Tree Species. http://www.fs.fed.us/ne/delaware/4153/global/littlefia/index.html. (Northeastern Research Station, USDA Forest Service).


  • Source: Ecology - nature.com

    Invasions of an obligate asexual daphnid species support the nearly neutral theory

    Succession comprises a sequence of threshold-induced community assembly processes towards multidiversity