in

Vegetation increases abundances of ground and canopy arthropods in Mediterranean vineyards

  • Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. 115, E10397–E10406 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).

    Google Scholar 

  • Habel, J. C., Samways, M. J. & Schmitt, T. Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodivers. Conserv. 28, 1343–1360 (2019).

    Google Scholar 

  • Brühl, C. A. & Zaller, J. G. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci. 7, 2013–2016 (2019).

    Google Scholar 

  • Seastedt, T. R. & Crossley, D. A. The influence of arthropods on ecosystems. Bioscience 34, 157–161 (1984).

    Google Scholar 

  • Brussaard, L. et al. Biodiversity and ecosystem functioning in soil. Ambio 26, 563–570 (1997).

    Google Scholar 

  • Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. Can generalist predators be effective biocontrol agents?. Annu. Rev. Entomol. 47, 561–594 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 29, R967–R971 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol. Lett. 10, 299–314 (2007).

    PubMed 

    Google Scholar 

  • Schowalter, T. D., Noriega, J. A. & Tscharntke, T. Insect effects on ecosystem services: Introduction. Basic Appl. Ecol. 26, 1–7 (2018).

    Google Scholar 

  • Dangles, O. & Casas, J. Ecosystem services provided by insects for achieving sustainable development goals. Ecosyst. Serv. 35, 109–115 (2019).

    Google Scholar 

  • van der Sluijs, J. P. Insect decline, an emerging global environmental risk. Curr. Opin. Environ. Sustain. 46, 39–42 (2020).

    Google Scholar 

  • Metcalfe, H., Hassall, K. L., Boinot, S. & Storkey, J. The contribution of spatial mass effects to plant diversity in arable fields. J. Appl. Ecol. 56, 1560–1574 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Winter, S. et al. Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: A meta-analysis. J. Appl. Ecol. 55, 2484–2495 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Blaise, C. et al. The key role of inter-row vegetation and ants on predation in Mediterranean organic vineyards. Agric. Ecosyst. Environ. 311, 107237 (2021).

    Google Scholar 

  • Hoffmann, C. et al. Can flowering greencover crops promote biological control in German vineyards?. Insects 8, 121 (2017).

    PubMed Central 

    Google Scholar 

  • Eckert, M., Mathulwe, L. L., Gaigher, R., der Merwe, L. J. & Pryke, J. S. Native cover crops enhance arthropod diversity in vineyards of the Cape Floristic Region. J. Insect Conserv. 24, 133–149 (2019).

    Google Scholar 

  • Sáenz-Romo, M. G. et al. Ground cover management in a Mediterranean vineyard: Impact on insect abundance and diversity. Agric. Ecosyst. Environ. 283, 106571 (2019).

    Google Scholar 

  • Capó-Bauçà, S., Marqués, A., Llopis-Vidal, N., Bota, J. & Baraza, E. Long-term establishment of natural green cover provides agroecosystem services by improving soil quality in a Mediterranean vineyard. Ecol. Eng. 127, 285–291 (2019).

    Google Scholar 

  • Garcia, L. et al. Management of service crops for the provision of ecosystem services in vineyards: A review. Agric. Ecosyst. Environ. 251, 158–170 (2018).

    Google Scholar 

  • Nicholls, C. I., Altieri, M. A. & Ponti, L. Enhancing plant diversity for improved insect pest management in Northern California organic vineyards. Acta Hortic. 785, 263–278 (2008).

    Google Scholar 

  • Franin, K., Barić, B. & Kuštera, G. The role of ecological infrastructure on beneficial arthropods in vineyards. Spanish J. Agric. Res. 14, e303 (2016).

    Google Scholar 

  • Shapira, I. et al. Habitat use by crop pests and natural enemies in a Mediterranean vineyard agroecosystem. Agric. Ecosyst. Environ. 267, 109–118 (2018).

    Google Scholar 

  • Judt, C. et al. Diverging effects of landscape factors and inter-row management on the abundance of beneficial and herbivorous arthropods in andalusian vineyards (Spain). Insects 10, 320 (2019).

    PubMed Central 

    Google Scholar 

  • Geldenhuys, M., Gaigher, R., Pryke, J. S. & Samways, M. J. Diverse herbaceous cover crops promote vineyard arthropod diversity across different management regimes. Agric. Ecosyst. Environ. 307, 107222 (2021).

    CAS 

    Google Scholar 

  • Medail, F. & Quezel, P. Biodiversity hotspots in the Mediterranean Basin: Setting global conservation priorities. Conserv. Biol. https://doi.org/10.1046/j.1523-1739.1999.98467.x (1999).

    Article 

    Google Scholar 

  • Carrère, P. La structure du vignoble du Vaucluse. Etudes Conjonct. 9, 931–949 (1957).

    Google Scholar 

  • Nentwig, W. et al. Spiders of Europe. (2020). www.araneae.nmbe.ch.

  • Tronquet, M. Catalogue des coléoptères de France. Rev. l’Assoc. Roussillonnaise d’Entomol. 23, 1–10 (2014).

    Google Scholar 

  • Rosseel, Y. Lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 2 (2012).

    Google Scholar 

  • Grace, J. B. Structural equation modeling and natural systems. Struct. Equ. Model. Nat. Syst. https://doi.org/10.1017/CBO9780511617799 (2006).

    Article 

    Google Scholar 

  • Fiera, C. et al. Effects of vineyard inter-row management on the diversity and abundance of plants and surface-dwelling invertebrates in Central Romania. J. Insect Conserv. 24, 175–185 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • de Pedro, L., Perera-Fernández, L. G., López-Gallego, E., Pérez-Marcos, M. & Sanchez, J. A. The effect of cover crops on the ciodiversity and abundance of ground-dwelling arthropods in a Mediterranean pear orchard. Agrono 10, 580 (2020).

    Google Scholar 

  • Ebeling, A. et al. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. PLoS ONE 9, e106529 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cobb, T. P., Langor, D. W. & Spence, J. R. Biodiversity and multiple disturbances: Boreal forest ground beetle (Coleoptera: Carabidae) responses to wildfire, harvesting, and herbicide. Can. J. For. Res. 37, 1310–1323 (2007).

    Google Scholar 

  • Hendrickx, F. et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 44, 340–351 (2007).

    Google Scholar 

  • Melbourne, B. A. Bias in the effect of habitat structure on pitfall traps: An experimental evaluation. Aust. J. Ecol. 24, 228–239 (1999).

    Google Scholar 

  • Welti, E. A. R., Prather, R. M., Sanders, N. J., de Beurs, K. M. & Kaspari, M. Bottom-up when it is not top-down: Predators and plants control biomass of grassland arthropods. J. Anim. Ecol. 89, 1286–1294 (2020).

    PubMed 

    Google Scholar 

  • Gonçalves, F. et al. Do soil management practices affect the activity density, diversity, and stability of soil arthropods in vineyards?. Agric. Ecosyst. Environ. 294, 106863 (2020).

    Google Scholar 

  • Muscas, E. et al. Effects of vineyard floor cover crops on grapevine vigor, yield, and fruit quality, and the development of the vine mealybug under a Mediterranean climate. Agric. Ecosyst. Environ. 237, 203–212 (2017).

    Google Scholar 

  • Nicholls, C. I., Parrella, M. P. & Altieri, M. A. Reducing the abundance of leafhoppers and thrips in a northern California organic vineyard through maintenance of full season floral diversity with summer cover crops. Agric. For. Entomol. 2, 107–113 (2000).

    Google Scholar 

  • Vogelweith, F. & Thiéry, D. Cover crop differentially affects arthropods, but not diseases, occurring on grape leaves in vineyards. Aust. J. Grape Wine Res. 23, 426–431 (2017).

    Google Scholar 

  • Hanna, R., Zalom, F. G. & Roltsch, W. J. Relative impact of spider predation and cover crop on population dynamics of Erythroneura variabilis in a raisin grape vineyard. Entomol. Exp. Appl. 107, 177–191 (2003).

    Google Scholar 

  • Burgio, G. et al. Habitat management of organic vineyard in Northern Italy: the role of cover plants management on arthropod functional biodiversity. Bull. Entomol. Res. 106, 759–768 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Wisniewska, J. & Prokopy, R. Do spiders (Araneae) feed on rose leafhopper (Edwardsiana rosae; Auchenorrhyncha: Cicadellidae) pests of apple trees? (2013).

  • Malumbres-Olarte, J., Vink, C. J., Ross, J. G., Cruickshank, R. H. & Paterson, A. M. The role of habitat complexity on spider communities in native alpine grasslands of New Zealand. Insect Conserv. Divers. 6, 124–134 (2013).

    Google Scholar 

  • Wilson, H. et al. Summer flowering cover crops support wild bees in vineyards. Environ. Entomol. 47, 63–69 (2018).

    PubMed 

    Google Scholar 

  • Kratschmer, S. et al. Tillage intensity or landscape features: What matters most for wild bee diversity in vineyards?. Agric. Ecosyst. Environ. 266, 142–152 (2018).

    Google Scholar 

  • Gardarin, A., Pigot, J. & Valantin-Morison, M. The hump-shaped effect of plant functional diversity on the biological control of a multi-species pest community. Sci. Rep. 11, 1–14 (2021).

    Google Scholar 

  • Serra, G., Lentini, A., Verdinelli, M. & Delrio, G. Effects of cover crop management on grape pests in a Mediterranean environment. IOBC/WPRS Bull. (2006).

  • Sáenz-Romo, M. G. et al. Effects of ground cover management on insect predators and pests in a Mediterranean vineyard. Insects 10, 421 (2019).

    PubMed Central 

    Google Scholar 

  • Barry, J. P., Baxter, C. H., Sagarin, R. D. & Gilman, S. E. Climate-related, long-term faunal changes in a California rocky intertidal community. Science 267, 672–675 (1995).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ewald, J. A. et al. Influences of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years. Glob. Chang. Biol. 21, 3931–3950 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • Celette, F., Findeling, A. & Gary, C. Competition for nitrogen in an unfertilized intercropping system: The case of an association of grapevine and grass cover in a Mediterranean climate. Eur. J. Agron. https://doi.org/10.1016/j.eja.2008.07.003 (2009).

    Article 

    Google Scholar 

  • Ruiz-Colmenero, M., Bienes, R. & Marques, M. J. Soil and water conservation dilemmas associated with the use of green cover in steep vineyards. Soil Tillage Res. 117, 211–223 (2011).

    Google Scholar 


  • Source: Ecology - nature.com

    Searching for genetic evidence of demographic decline in an arctic seabird: beware of overlapping generations

    New maps show airplane contrails over the U.S. dropped steeply in 2020