in

Vertically migrating phytoplankton fuel high oceanic primary production

  • Westberry, T., Behrenfeld, M., Siegel, D. & Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 22 (2008).

  • Richardson, K. & Bendtsen, J. Vertical distribution of phytoplankton and primary production in relation to nutricline depth in the open ocean. Mar. Ecol. Prog. Ser. 620, 33–46 (2019).

    CAS 

    Google Scholar 

  • Oschlies, A. in Ocean Modeling in an Eddying Regime (eds Hecht, M. W. & Hasumi, H.) 115–130 (AGU, 2008).

  • Letscher, R. T., Primeau, F. & Moore, J. K. Nutrient budgets in the subtropical ocean gyres dominated by lateral transport. Nat. Geosci. 9, 815–819 (2016).

    CAS 

    Google Scholar 

  • Johnson, K. S., Riser, S. C. & Karl, D. M. Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre. Nature 465, 1062–1065 (2010).

    CAS 

    Google Scholar 

  • Fawcett, S. E., Lomas, M. W., Casey, J. R., Ward, B. B. & Sigman, D. M. Assimilation of upwelled nitrate by small eukaryotes in the Sargasso Sea. Nat. Geosci. 4, 717–722 (2011).

    CAS 

    Google Scholar 

  • Knapp, A. N., Casciotti, K. L., Berelson, W. M., Prokopenko, M. G. & Capone, D. G. Low rates of nitrogen fixation in eastern tropical South Pacific surface waters. Proc. Natl Acad. Sci. USA 113, 4398–4403 (2016).

    CAS 

    Google Scholar 

  • Böttjer, D. et al. Temporal variability of nitrogen fixation and particulate nitrogen export at station ALOHA. Limnol. Oceanogr. 62, 200–216 (2017).

    Google Scholar 

  • Gruber, N., Keeling, C. D. & Stocker, T. F. Carbon-13 constraints on the seasonal inorganic carbon budget at the BATS site in the northwestern Sargasso Sea. Deep Sea Res. 1 45, 673–717 (1998).

    CAS 

    Google Scholar 

  • Doney, S. C., Glover, D. M. & Najjar, R. G. A new coupled, one-dimensional biological–physical model for the upper ocean: applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep Sea Res. 2 43, 591–624 (1996).

    CAS 

    Google Scholar 

  • Ascani, F. et al. Physical and biological controls of nitrate concentrations in the upper subtropical North Pacific Ocean. Deep Sea Res 2 93, 119–134 (2013).

    CAS 

    Google Scholar 

  • Gran, H. H. in Rapport Vol. 56, 1–112 (Bureau du Conseil permanent international pour l’exploration de la mer, 1929).

  • Hasle, G. R. Phototactic vertical migration in marine dinoflagellates. Oikos 2, 162–175 (1950).

    Google Scholar 

  • Villareal, T. A. et al. Upward transport of oceanic nitrate by migrating diatom mats. Nature 397, 423–425 (1999).

    CAS 

    Google Scholar 

  • Villareal, T. & Carpenter, E. Buoyancy regulation and the potential for vertical migration in the oceanic cyanobacterium Trichodesmium. Microb. Ecol. 45, 1–10 (2003).

    CAS 

    Google Scholar 

  • Wirtz, K. & Smith, S. L. Vertical migration by bulk phytoplankton sustains biodiversity and nutrient input to the surface ocean. Sci. Rep. 10, 1142 (2020).

    CAS 

    Google Scholar 

  • Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J. & Westberry, T. K. The CAFE model: a net production model for global ocean phytoplankton. Glob. Biogeochem. Cycles 30, 1756–1777 (2016).

    CAS 

    Google Scholar 

  • Wang, W.-L., Moore, J. K., Martiny, A. C. & Primeau, F. W. Convergent estimates of marine nitrogen fixation. Nature 566, 205–211 (2019).

    CAS 

    Google Scholar 

  • Karl, D. M., Letelier, R., Hebel, D. V., Bird, D. F. & Winn, C. D. in Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs (eds Carpenter, E. J. et al.) 219–237 (Springer, 1992).

  • Cullen, J. J. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Ann. Rev. Mar. Sci. 7, 207–239 (2015).

    Google Scholar 

  • Masuda, Y. et al. Photoacclimation by phytoplankton determines the distribution of global subsurface chlorophyll maxima in the ocean. Commun. Earth Environ. 2, 1–8 (2021).

    Google Scholar 

  • Anugerahanti, P., Kerimoglu, O. & Smith, S. L. Enhancing ocean biogeochemical models with phytoplankton variable composition. Front. Mar. Sci. 8, 675428 (2021).

    Google Scholar 

  • Pérez, V., Fernández, E., Marañón, E., Morán, X. A. G. & Zubkov, M. V. Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep Sea Res. 1 53, 1616–1634 (2006).

    Google Scholar 

  • Cornec, M. et al. Deep chlorophyll maxima in the global ocean: occurrences, drivers and characteristics. Glob. Biogeochem. Cycles 35, e2020GB006759 (2021).

    CAS 

    Google Scholar 

  • Li, Q. P., Wang, Y., Dong, Y. & Gan, J. Modeling long-term change of planktonic ecosystems in the northern South China Sea and the upstream Kuroshio Current. J. Geophys. Res. 120, 3913–3936 (2015).

    Google Scholar 

  • Latif, S., Ayub, Z. & Siddiqui, G. Seasonal variability of phytoplankton in a coastal lagoon and adjacent open sea in Pakistan. Turk. J. Botany 37, 398–410 (2013).

    CAS 

    Google Scholar 

  • Liang, Y. et al. Nutrient-limitation induced diatom–dinoflagellate shift of spring phytoplankton community in an offshore shellfish farming area. Mar. Pollut. Bull. 141, 1–8 (2019).

    CAS 

    Google Scholar 

  • Rahlff, J. et al. Short-term responses to ocean acidification: effects on relative abundance of eukaryotic plankton from the tropical Timor Sea. Mar. Ecol. Prog. Ser. 658, 59–74 (2021).

    CAS 

    Google Scholar 

  • Kahru, M., Savchuk, O. & Elmgren, R. Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability. Mar. Ecol. Prog. Ser. 343, 15–23 (2007).

    Google Scholar 

  • Klais, R., Tamminen, T., Kremp, A., Spilling, K. & Olli, K. Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom. PLoS ONE 6, e21567 (2011).

    CAS 

    Google Scholar 

  • Klais, R., Norros, V., Lehtinen, S., Tamminen, T. & Olli, K. Community assembly and drivers of phytoplankton functional structure. Funct. Ecol. 31, 760–767 (2017).

    Google Scholar 

  • Villareal, T. A., Pilskaln, C. H., Montoya, J. P. & Dennett, M. Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas. PeerJ 2, e302 (2014).

    Google Scholar 

  • Mignot, A. et al. Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: a bio-argo float investigation. Glob. Biogeochem. Cycles 28, 856–876 (2014).

    CAS 

    Google Scholar 

  • Chen, B., Smith, S. L. & Wirtz, K. W. Effect of phytoplankton size diversity on primary productivity in the North Pacific: trait distributions under environmental variability. Ecol. Lett. 22, 56–66 (2019).

    Google Scholar 

  • Cabré, A., Marinov, I. & Leung, S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 Earth system models. Clim. Dyn. 45, 1253–1280 (2015).

    Google Scholar 

  • Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Mod. Earth Sys. 5, 572–597 (2013).

    Google Scholar 

  • Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Google Scholar 

  • Fu, W., Randerson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).

    Google Scholar 

  • Gliwicz, M. Z. Predation and the evolution of vertical migration in zooplankton. Nature 320, 746–748 (1986).

    Google Scholar 

  • Huettel, M., Forster, S., Kloser, S. & Fossing, H. Vertical migration in the sediment-dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations. Appl. Environ. Microbiol. 62, 1863–1872 (1996).

    CAS 

    Google Scholar 

  • Waterbury, J. B., Willey, J. M., Franks, D. G., Valois, F. W. & Watson, S. W. A cyanobacterium capable of swimming motility. Science 230, 74–76 (1985).

    CAS 

    Google Scholar 

  • McCarren, J. et al. Inactivation of swmA results in the loss of an outer cell layer in a swimming Synechococcus strain. J. Bacteriol. 187, 224–230 (2005).

    CAS 

    Google Scholar 

  • Eppley, R. W., Holm-Hansen, O. & Strickland, J. D. Some observations on the vertical migration of dinoflagellates. J. Phycol. 4, 333–340 (1968).

    CAS 

    Google Scholar 

  • Sengupta, A., Carrara, F. & Stocker, R. Phytoplankton can actively diversify their migration strategy in response to turbulent cues. Nature 543, 555–558 (2017).

    CAS 

    Google Scholar 

  • Waite, A., Fisher, A., Thompson, P. & Harrison, P. Sinking rate verses cell volume relationships illuminate sinking rate control mechanisms in marine diatoms. Mar. Ecol. Prog. Ser. 157, 97–108 (1997).

    Google Scholar 

  • Throndsen, J. Motility in some marine nanoplankton flagellates. Nor. J. Zool. 21, 193–200 (1973).

    Google Scholar 

  • Gittleson, S. M., Hotchkiss, S. K. & Valencia, F. G. Locomotion in the marine dinoflagellate Amphidinium carterae (Hulburt). Trans. Am. Microsc. Soc. 93, 101–105 (1974).

  • Barsanti, L. et al. Swimming patterns of the quadriflagellate Tetraflagellochloris mauritanica (Chlamydomonadales, Chlorophyceae). J. Phycol. 52, 209–218 (2016).

    Google Scholar 

  • Schuech, R. & Menden-Deuer, S. Going ballistic in the plankton: anisotropic swimming behavior of marine protists. Limnol. Oceanogr. Fluids Environ. 4, 1–16 (2014).

    Google Scholar 

  • Eppley, R. W., Holmes, R. W. & Strickland, J. D. Sinking rates of marine phytoplankton measured with a fluorometer. J. Exp. Mar. Biol. Ecol. 1, 191–208 (1967).

    Google Scholar 

  • Bienfang, P. Phytoplankton sinking rates in oligotrophic waters off Hawaii, USA. Mar. Biol. 61, 69–77 (1980).

    Google Scholar 

  • Lisicki, M., Rodrigues, M. F. V., Goldstein, R. E. & Lauga, E. Swimming eukaryotic microorganisms exhibit a universal speed distribution. Elife 8, e44907 (2019).

    CAS 

    Google Scholar 

  • Moore, J. & Villareal, T. Buoyancy and growth characteristics of three positively buoyant marine diatoms. Mar. Ecol. Prog. Ser. 132 (1996).

  • Hawaii Ocean Time-series (HOT) (School of Ocean and Earth Science and Technology at the University of Hawai’i, 2020); http://hahana.soest.hawaii.edu/hot/hot-dogs

  • Bermuda Atlantic Time-Series (BATS) (Bermuda Institure of Ocean Sciences, 2020); http://bats.bios.edu

  • The Japanese 55-Year Reanalysis (JRA-55) (Japan Meteorological Agency, 2020); http://jra.kishou.go.jp/JRA-55

  • Ridgway, K., Dunn, J. & Wilkin, J. Ocean interpolation by four-dimensional weighted least squares—application to the waters around Australasia. J. Atmos. Ocean. Technol. 19, 1357–1375 (2002).

    Google Scholar 

  • CSIRO Atlas of Regional Seas (CARS) (CSIRO, 2009); http://www.marine.csiro.au/~dunn/cars2009

  • Ocean Colour (ESA-CCI, 2020); http://www.esa-oceancolour-cci.org

  • Cloud (ESA-CCI, 2020); http://www.esa-cloud-cci.org

  • Sea Surface Temperature (ESA-CCI, 2020); http://www.esa-sst-cci.org

  • Rosati, A. & Miyakoda, K. A general circulation model for upper ocean simulation. J. Phys. Oceanogr. 18, 1601–1626 (1988).

    Google Scholar 

  • Ralston, D. K., McGillicuddy, D. J. & Townsend, D. W. Asynchronous vertical migration and bimodal distribution of motile phytoplankton. J. Plankton Res. 29, 803–821 (2007).

    Google Scholar 

  • Kamykowski, D. & Yamazaki, H. A study of metabolism-influenced orientation in the diel vertical migration of marine dinoflagellates. Limnol. Oceanogr. 42, 1189–1202 (1997).

    Google Scholar 

  • Richardson, T. L., Cullen, J. J., Kelley, D. E. & Lewis, M. R. Potential contributions of vertically migrating Rhizosolenia to nutrient cycling and new production in the open ocean. J. Plankton Res. 20, 219–241 (1998).

    Google Scholar 

  • Ross, O. N. & Sharples, J. Phytoplankton motility and the competition for nutrients in the thermocline. Mar. Ecol. Prog. Ser. 347, 21–38 (2007).

    CAS 

    Google Scholar 

  • Chavez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Ann. Rev. Mar. Sci. 3, 227–260 (2011).

    Google Scholar 

  • Saba, V. et al. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences 8, 489–503 (2011).

    CAS 

    Google Scholar 

  • Bhattathiri, P., Devassy, V. & Radhakrishna, K. Primary production in the Bay of Bengal during southwest monsoon of 1978. Mahasagar Bull. Natl Inst. Oceanogr. 13, 315–323 (1980).

    Google Scholar 

  • Sarupria, J. & Bhargava, R. Seasonal primary production in different sectors of the EEZ of India. Mahasagar Bull. Natl Inst. Oceanogr. 26, 139–147 (1993).

    Google Scholar 

  • Jyothibabu, R. et al. Differential response of winter cooling on biological production in the northeastern Arabian Sea and northwestern Bay of Bengal. Curr. Sci. 87, 783–791 (2004).

    Google Scholar 

  • Kumar, S. P. et al. Is the biological productivity in the Bay of Bengal light limited? Curr. Sci. 98, 1331–1339 (2010).

    CAS 

    Google Scholar 

  • Kumar, S. P. et al. Seasonal cycle of physical forcing and biological response in the Bay of Bengal. Ind. J. Mar. Sci. 39, 388–405 (2010).

    CAS 

    Google Scholar 

  • Buitenhuis, E. T., Hashioka, T. & Quéré, C. L. Combined constraints on global ocean primary production using observations and models. Glob. Biogeochem. Cycles 27, 847–858 (2013).

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Development of microsatellites markers for the deep coral Madracis myriaster (Pocilloporidae: Anthozoa)

    Proximity to small-scale inland and coastal fisheries is associated with improved income and food security