Koski, S. E. Broader horizons for animal personality research. Front. Ecol. Evol. 2, 70 (2014).
Google Scholar
Careere, C. & Eens, M. Unravelling animal personalities: How and why individuals consistently differ. Behaviour 142, 1149–1157 (2005).
Google Scholar
Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. Lond. B 271, 847–852 (2004).
Google Scholar
Bell, A. M. & Sih, A. Exposure to predation generates personality in three-spined sticklebacks (Gasterosteus aculeatus). Ecol. Lett. 10, 828–834 (2007).
Google Scholar
Cavigelli, S. A. Animal personality and health. Behaviour 142, 1223–1244 (2005).
Google Scholar
Barber, I. & Dingemanse, N. J. Parasitism and the evolutionary ecology of animal personality. Proc. R. Soc. Lond. B 365, 4077–4088 (2010).
Koprivnikar, J., Gibson, C. H. & Redfern, J. C. Infectious personalities: Behavioural syndromes and disease risk in larval amphibians. Proc. R. Soc. Lond. B 279, 1544–1550 (2012).
Turner, J. & Hughes, W. O. H. The effect of parasitism on personality in a social insect. Behav. Proc. 157, 532–539 (2018).
Google Scholar
Frost, A. J., Winrow-Giffen, A., Ashley, P. J. & Sneddon, L. U. Plasticity in animal personality traits: Does prior experience alter the degree of boldness?. Proc. Biol. Sci. 274, 333–339 (2007).
Google Scholar
Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: A review. Philos. Trans. R. Soc. B 365, 3947–3958 (2010).
Google Scholar
Müller, T. & Müller, C. Phenotype of a leaf beetle larva depends on host plant quality and previous test experience. Behav. Proc. 142, 40–45 (2017).
Google Scholar
Hart, B. L. Biological basis of behaviour in sick animals. Neurosci. Biobehav. Rev. 12, 123–137 (1988).
Google Scholar
Hart, B. L. Behavioral adaptations to pathogens and parasites: Five strategies. Neurosci. Biobehav. Rev. 14, 273–294 (1990).
Google Scholar
Johnson, R. W. The concept of sickness behavior: A brief chronological account of four key discoveries. Vet. Immunol. Immunopathol. 87, 443–450 (2002).
Google Scholar
Klein, S. L. Parasite manipulation of the proximate mechanisms that mediate social behavior in vertebrates. Physiol. Behav. 79, 441–449 (2003).
Google Scholar
Boyer, N., Reale, D., Marmet, J., Pisanu, B. & Chapuis, L. Personality, space use and tick load in an introduced population of Siberian chipmunks Tanias sibiricus. J. Anim. Ecol. 79, 538–547 (2010).
Google Scholar
Ezenwa, V. O. Host social behavior and parasitic infection: A multifactorial approach. Behav. Ecol. 15, 446–454 (2004).
Google Scholar
Finkemeier, M. A., Langbein, J. & Puppe, B. Personality research in mammalian farm animals: Concepts, measures and relationship to welfare. Front. Vet. Sci. 5, 131 (2018).
Google Scholar
Huntingford, F. & Adams, C. Behavioural syndromes in farmed fish: Implications for production and welfare. Behaviour 142, 1207–1221 (2005).
Google Scholar
Berggren, Å., Jansson, A. & Low, M. Approaching ecological sustainability in the emerging insects-as-food industry. Trends Ecol. Evol. 34, 132–138 (2019).
Google Scholar
Dochtermann, N. A. & Nelson, A. B. Multiple facets of exploratory behavior in house crickets (Acheta domesticus): Split personalities or simply different behaviors?. Ethology 120, 1110–1117 (2014).
Google Scholar
van Huis, A. & Tomberlin, J. K. Future prospects. In Insects as Food Feed: From Production to Consumption (eds van Huis, A. & Tomberlin, J. K.) 430–445 (Wageningen Academic Publishers, 2017).
Szelei, J. et al. Susceptibility of North-American and European crickets to Acheta domesticus densovirus (AdDNV) and associated epizootics. J. Invert. Pathol 106, 394–399 (2011).
Google Scholar
Eilenberg, J., Vlak, J. M., Nielsen-LeRoux, C., Cappellozza, S. & Jensen, A. B. Diseases in insects produced for food and feed. J. Insects Food Feed 1, 87–102 (2015).
Google Scholar
Raubenheimer, D. & Tucker, D. Associative learning by locusts: Pairing of visual cues with consumption of protein and carbohydrate. Anim. Behav. 54, 1449–1459 (1997).
Google Scholar
Mallory, H. S., Howard, A. F. & Weiss, M. R. Timing of environmental enrichment affects memory in the house cricket, Acheta domesticus. PLoS One 11, e0152245 (2016).
Google Scholar
Sih, A., Bell, A. M., Johnson, J. C. & Ziemba, R. E. Behavioral syndromes: An integrative overview. Q. Rev. Biol. 79, 241–277 (2004).
Google Scholar
Siva-Jothy, J. A. & Vale, P. F. Viral infection causes sex-specific changes in fruit fly social aggregation behaviour. Biol. Lett. 15, 20190344 (2019).
Google Scholar
Van Houte, S., Ros, V. I. D. & Van Oers, M. M. Walking with insects: Molecular mechanisms behind parasitic manipulation of host behaviour. Mol. Ecol. 22, 3458–3475 (2013).
Google Scholar
Vale, P. F., Siva-Jothy, J. A., Morrill, A. & Forbes, M. R. The influence of parasites. In Insect Behavior: From Mechanisms to Ecological and Evolutionary Consequences (eds Córdoba-Aguilar, A., González-Tokman, D. & González-Santoyo, I) (Oxford University Press, 2018).
de Roode, J. C. & Lefèvre, T. Behavioral Immunity in Insects. Insects 3, 789–820 (2012).
Google Scholar
Kutzer, M. A. M. & Armitage, S. A. O. Maximising fitness in the face of parasites: A review of host tolerance. Zoology 119, 281–289 (2016).
Google Scholar
Vossen, L. E., Roman, E. & Jansson, A. Fasting increases shelter use in house crickets (Acheta domestica). J. Insects Food Feed 8, 5–8 (2021).
Google Scholar
Schutgens, M., Cook, B., Gilbert, F. & Behnke, J. M. Behavioural changes in the flour beetle Tribolium confusum infected with the spirurid nematode Protospirura muricola. J. Helminthol. 89, 68–79 (2015).
Google Scholar
Kazlauskas, N., Klappenbach, M., Depino, A. M. & Locatelli, F. F. Sickness behavior in honey bees. Front. Physiol. 7, 261 (2016).
Google Scholar
Stahlschmidt, Z. R. & Adamo, S. A. Context dependency and generality of fever in insects. Naturwissenschaften 100, 691–696 (2013).
Google Scholar
Wang, S. Y. S., Tattersall, G. J. & Koprivnikar, J. Trematode parasite infection affects temperature selection in aquatic host snails. Physiol. Biochem. Zool. 92, 71–79 (2019).
Google Scholar
Berggren, Å., Jansson, A. & Low, M. Using current systems to inform rearing facility design in the insects-as-food industry. J. Insects Food Feed. 4, 167–170 (2018).
Google Scholar
Marshall, J. A. & Haes, E. C. M. Grasshoppers and Allied Insects of Great Britain and Ireland (Harley Books, Essex) (1988).
GBIF Secretariat. Acheta domesticus (Linnaeus, 1758). GBIF Backbone Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei accessed via GBIF.org on 12 Jan 2022 (2021).
Holst, K. T. The Saltatoria (Bush-crickets, Crickets and Grasshoppers) of Northern Europe (E J Brill, 1986).
Ingrisch, S. & Köhler, G. Die heuschrecken mitteleuropas. (Westarp Wissenschaften, 1998).
Booth, D. T. & Kiddell, K. Temperature and the energetics of development in the house cricket (Acheta domesticus). J. Insect Physiol. 53, 950–953 (2007).
Google Scholar
Ghouri, A. S. K. & McFarlane, J. E. Observations on the development of crickets. Can. Entomol. 90, 158–165 (1958).
Google Scholar
Semberg, E. et al. Diagnostic protocols for the detection of Acheta domesticus densovirus (AdDV) in cricket frass. J. Virol. Methods 264, 61–64 (2019).
Google Scholar
Bergoin, M. & Tijssen, P. Parvoviruses of arthropods. In Encyclopedia of Virology. 76–85 (2008).
Cotmore, S. F. et al. The family Parvoviridae. Arch. Virol. 159, 1239–1247 (2014).
Google Scholar
Styer, E. L. & Hamm, J. J. Report of a densovirus in a commercial cricket operation in the southeastern United States. J. Invert. Pathol. 58, 283–285 (1991).
Google Scholar
Weissman, D. B., Gray, D. A., Pham, H. T. & Tijssen, P. Billions and billions sold: Pet-feeder crickets (Orthoptera: Gryllidae), commercial crickets farms, an epizootic densovirus, and government regulations make for a potential disaster. Zootaxa 3504, 67–88 (2012).
Google Scholar
Maciel-Vergara, G. & Ros, V. I. D. Viruses of insects reared for food and feed. J. Invert. Pathol. 147, 60–75 (2017).
Google Scholar
Liu, K. et al. The Acheta domesticus densovirus, isolated from the European house cricket, has evolved an expression strategy unique among parvoviruses. J. Virol. 85, 10069–10078 (2011).
Google Scholar
Wang, Y. et al. Densovirus crosses the insect midgut by transcytosis and disturbs the epithelial barrier function. J. Virol. 87, 12380–12391 (2013).
Google Scholar
de Miranda, J. R. et al. Virus diversity and loads in crickets reared for feed: Implications for husbandry. Front. Vet. Sci. 8, 642085 (2021).
Google Scholar
de Miranda, J. R., Granberg, F., Onorati, P., Jansson, A. & Berggren, Å. Virus prospecting in crickets: discovery and strain divergence of a novel Iflavirus in wild and cultivated Acheta domesticus. Viruses 13, 364 (2021).
Google Scholar
Niemelä, P., Vainikka, A., Hedrick, A. & Kortet, R. Integrating behaviour with life history: Boldness of the field cricket, Gryllus integer, during ontogeny. Funct. Ecol. 26, 450–456 (2012).
Google Scholar
Hedrick, A. V. Crickets with extravagant mating songs compensate for predation risk with extra caution. Proc. R. Soc. Lond. B 267, 671–675 (2000).
Google Scholar
Hedrick, A. V. & Kortet, R. Hiding behaviour in two cricket populations that differ in predation pressure. Anim. Behav. 72, 1111–1118 (2006).
Google Scholar
Kortet, R. & Hedrick, A. V. A behavioural syndrome in the field cricket Gryllus integer: Intrasexual aggression is correlated with activity in a novel environment. Biol. J. Linnean Soc. 91, 475–482 (2007).
Google Scholar
Fisher, D. N., David, M., Rodríguez-Muñoz, R. & Tregenza, T. Lifespan and age, but not residual reproductive value or condition, are related to behaviour in wild field crickets. Ethology 124, 338–346 (2018).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).
Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd International Workshop on Distributed Statistical Computing. Vienna, Austria (2003).
Le Galliard, J. F., Paquet, M., Cisel, M. & Montes-Poloni, L. Personality and the pace-of-life syndrome: Variation and selection on exploration, metabolism and locomotor performances. Funct. Ecol. 27, 136–144 (2013).
Google Scholar
Roche, D. G., Careau, V. & Binning, S. A. Demystifying animal ‘personality’ (or not): Why individual variation matters to experimental biologists. J. Exp. Biol. 219, 3832–3843 (2016).
Google Scholar
Low, M. et al. The importance of accounting for larval detectability in mosquito habitat-association studies. Malar. J. 15, 1–9 (2016).
Google Scholar
Source: Ecology - nature.com