in

Warming and predation risk only weakly shape size-mediated priority effects in a cannibalistic damselfly

  • Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Angert, A. L., LaDeau, S. L. & Ostfeld, R. S. Climate change and species interactions: ways forward. Ann. N. Y. Acad. Sci. 1297, 1–7 (2013).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Yang, L. H. & Rudolf, V. H. W. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol. Lett. 13, 1–10 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kersting, D. K. et al. Experimental evidence of the synergistic effects of warming and invasive algae on a temperate reef-builder coral. Sci. Rep. 5, 18635 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhou, Y. et al. Warming reshaped the microbial hierarchical interactions. Glob. Chang. Biol. 27, 6331–6347 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Grainger, T. N., Rego, A. I. & Gilbert, B. Temperature-dependent species interactions shape priority effects and the persistence of unequal competitors. Am. Nat. 191, 197–209 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Ørsted, M., Schou, M. F. & Kristensen, T. N. Biotic and abiotic factors investigated in two Drosophila species: evidence of both negative and positive effects of interactions on performance. Sci. Rep. 7, 40132 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sniegula, S., Golab, M. J. & Johansson, F. Size-mediated priority and temperature effects on intra-cohort competition and cannibalism in a damselfly. J. Anim. Ecol. 88, 637–648 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Chang. Biol. 13, 1860–1872 (2007).

    ADS 
    Article 

    Google Scholar 

  • Carter, S. K. & Rudolf, V. H. W. Shifts in phenological mean and synchrony interact to shape competitive outcomes. Ecology 100, e02826 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Rudolf, V. H. W. Nonlinear effects of phenological shifts link interannual variation to species interactions. J. Anim. Ecol. 87, 1395–1406 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Rasmussen, N. L., Allen, B. G. V. & Rudolf, V. H. W. Linking phenological shifts to species interactions through size-mediated priority effects. J. Anim. Ecol. 83, 1206–1215 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Bailey, L. D. & Pol, M. van de. Tackling extremes: challenges for ecological and evolutionary research on extreme climatic events. J. Anim. Ecol. 85, 85–96 (2016).

  • Walker, R., Wilder, S. M. & González, A. L. Temperature dependency of predation: increased killing rates and prey mass consumption by predators with warming. Ecol. Evol. 10, 9696–9706 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Anholt, B. R. Cannibalism and early instar survival in a larval damselfly. Oecologia 99, 60–65 (1994).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Johansson, F. & Crowley, P. H. Larval cannibalism and population dynamics of dragonflies. in Aquatic insects: challenges to populations (eds. Lancaster, J. & Briers, R. A.) 36–54 (CABI, 2008). doi:https://doi.org/10.1079/9781845933968.0036.

  • Takashina, N. & Fiksen, Ø. Optimal reproductive phenology under size-dependent cannibalism. Ecol. Evol. 10, 4241–4250 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Crumrine, P. W. Body size, temperature, and seasonal differences in size structure influence the occurrence of cannibalism in larvae of the migratory dragonfly, Anax junius. Aquat. Ecol. 44, 761–770 (2010).

    Article 

    Google Scholar 

  • Op de Beeck, L., Verheyen, J. & Stoks, R. Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy. Environ. Pollut. 233, 226–234 (2018).

  • Enriquez-Urzelai, U., Nicieza, A. G., Montori, A., Llorente, G. A. & Urrutia, M. B. Physiology and acclimation potential are tuned with phenology in larvae of a prolonged breeder amphibian. Oikos 2022, e08566 (2022).

    Article 

    Google Scholar 

  • Knight, C. M., Parris, M. J. & Gutzke, W. H. N. Influence of priority effects and pond location on invaded larval amphibian communities. Biol. Invasions 11, 1033–1044 (2009).

    Article 

    Google Scholar 

  • Raczyński, M., Stoks, R., Johansson, F., Bartoń, K. & Sniegula, S. Phenological shifts in a warming world affect physiology and life history in a damselfly. Insects 13, 622 (2022).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Murillo-Rincón, A. P., Kolter, N. A., Laurila, A. & Orizaola, G. Intraspecific priority effects modify compensatory responses to changes in hatching phenology in an amphibian. J. Anim. Ecol. 86, 128–135 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).

    Article 

    Google Scholar 

  • Jermacz, Ł. et al. Continuity of chronic predation risk determines changes in prey physiology. Sci. Rep. 10, 6972 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Raczyński, M., Stoks, R., Johansson, F. & Sniegula, S. Size-mediated priority effects are trait-dependent and consistent across latitudes in a damselfly. Oikos 130, 1535–1547 (2021).

    Article 

    Google Scholar 

  • Peacor, S. D. & Werner, E. E. Predator effects on an assemblage of consumers through induced changes in consumer foraging behavior. Ecology 81, 1998–2010 (2000).

    Article 

    Google Scholar 

  • Stoks, R., Block, M. D., Meutter, F. V. D. & Johansson, F. Predation cost of rapid growth: behavioural coupling and physiological decoupling. J. Anim. Ecol. 74, 708–715 (2005).

    Article 

    Google Scholar 

  • Hermann, S. L. & Landis, D. A. Scaling up our understanding of non-consumptive effects in insect systems. Curr. Opin. Insect. Sci. 20, 54–60 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Sniegula, S., Nsanzimana, J. d’Amour & Johansson, F. Predation risk affects egg mortality and carry over effects in the larval stages in damselflies. Freshw. Biol. 64, 778–786 (2019).

  • Preisser, E. L. & Orrock, J. L. The allometry of fear: interspecific relationships between body size and response to predation risk. Ecosphere 3, art77 (2012).

  • Gehr, B. et al. Evidence for nonconsumptive effects from a large predator in an ungulate prey?. Behav. Ecol. 29, 724–735 (2018).

    Article 

    Google Scholar 

  • Jiménez-Cortés, J. G., Serrano-Meneses, M. A. & Córdoba-Aguilar, A. The effects of food shortage during larval development on adult body size, body mass, physiology and developmental time in a tropical damselfly. J. Insect Physiol. 58, 318–326 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Weissburg, M., Smee, D. L., Ferner, M. C., Schmitz, A. E. O. J. & Bronstein, E. J. L. The sensory ecology of nonconsumptive predator effects. Am. Nat. 184, 141–157 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Zhang, D.-W., Xiao, Z.-J., Zeng, B.-P., Li, K. & Tang, Y.-L. Insect behavior and physiological adaptation mechanisms under starvation stress. Front. Physiol. 10, 163 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Arnett, H. A. & Kinnison, M. T. Predator-induced phenotypic plasticity of shape and behavior: parallel and unique patterns across sexes and species. Curr. Zool. 63, 369–378 (2017).

    PubMed 

    Google Scholar 

  • Bell, A. M., Dingemanse, N. J., Hankison, S. J., Langenhof, M. B. W. & Rollins, K. Early exposure to nonlethal predation risk by size-selective predators increases somatic growth and decreases size at adulthood in threespined sticklebacks. J. Evol. Biol. 24, 943–953 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • De Block, M. & Stoks, R. Compensatory growth and oxidative stress in a damselfly. Proc. Royal Soc. B 275, 781–785 (2008).

    Article 

    Google Scholar 

  • Lee, W.-S., Monaghan, P. & Metcalfe, N. B. The trade-off between growth rate and locomotor performance varies with perceived time until breeding. J. Exp. Biol. 213, 3289–3298 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Catalán, A. M. et al. Community-wide consequences of nonconsumptive predator effects on a foundation species. J. Anim. Ecol. 90, 1307–1316 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Preisser, E. L., Bolnick, D. I. & Benard, M. F. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86, 501–509 (2005).

    Article 

    Google Scholar 

  • Gjoni, V., Basset, A. & Glazier, D. S. Temperature and predator cues interactively affect ontogenetic metabolic scaling of aquatic amphipods. Biol. Lett. 16, 20200267 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Miller, L. P., Matassa, C. M. & Trussell, G. C. Climate change enhances the negative effects of predation risk on an intermediate consumer. Glob. Chang. Biol. 20, 3834–3844 (2014).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Beckerman, A. P., Rodgers, G. M. & Dennis, S. R. The reaction norm of size and age at maturity under multiple predator risk. J. Anim. Ecol. 79, 1069–1076 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Lancaster, L. T., Morrison, G. & Fitt, R. N. Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372, 20160046 (2017).

  • Sniegula, S., Janssens, L. & Stoks, R. Integrating multiple stressors across life stages and latitudes: combined and delayed effects of an egg heat wave and larval pesticide exposure in a damselfly. Aquat. Toxicol. 186, 113–122 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stoks, R., Block, M. D., Slos, S., Doorslaer, W. V. & Rolff, J. Time constraints mediate predator-induced plasticity in immune function, condition, and life history. Ecology 87, 809–815 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar 

  • Pintanel, P., Tejedo, M., Salinas-Ivanenko, S., Jervis, P. & Merino-Viteri, A. Predators like it hot: thermal mismatch in a predator-prey system across an elevational tropical gradient. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13516 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Stoks, R., Swillen, I. & Block, M. D. Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae. J. Anim. Ecol. 81, 1034–1040 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Wang, Y.-J., Sentis, A., Tüzün, N. & Stoks, R. Thermal evolution ameliorates the long-term plastic effects of warming, temperature fluctuations and heat waves on predator–prey interaction strength. Funct. Ecol. 35, 1538–1549 (2021).

    Article 

    Google Scholar 

  • Sniegula, S., Golab, M. J. & Johansson, F. Cannibalism and activity rate in larval damselflies increase along a latitudinal gradient as a consequence of time constraints. BMC Evol. Biol. 17, 167 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gyssels, F. & Stoks, R. Behavioral responses to fish kairomones and autotomy in a damselfly. J. Ethol. 24, 79–83 (2006).

    Article 

    Google Scholar 

  • McPeek, M. A., Grace, M. & Richardson, J. M. L. Physiological and behavioral responses to predators shape the growth/predation risk trade-off in damselflies. Ecology 82, 1535–1545 (2001).

    Article 

    Google Scholar 

  • Beermann, J., Boos, K., Gutow, L., Boersma, M. & Peralta, A. C. Combined effects of predator cues and competition define habitat choice and food consumption of amphipod mesograzers. Oecologia 186, 645–654 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Evol. Syst. 2, 369–404 (1971).

    Article 

    Google Scholar 

  • Dijkstra, K., Schröter, A. & Lewington, R. Field Guide to the Dragonflies of Britain and Europe. Second edition. (Bloomsbury Publishing, 2020).

  • Corbet, P. S., Suhling, F. & Soendgerath, D. Voltinism of Odonata: a review. Int. J. Odonatol. 9, 1–44 (2006).

    Article 

    Google Scholar 

  • Zwick, P. & Corbet, P. S. Dragonflies: behaviour and ecology of Odonata. (Comstock Publishing Associates, 1999).

  • Fontana-Bria, L., Selfa, J., Tur, C. & Frago, E. Early exposure to predation risk carries over metamorphosis in two distantly related freshwater insects. Ecol. Entomol. 42, 255–262 (2017).

    Article 

    Google Scholar 

  • Sniegula, S., Raczyński, M., Golab, M. J. & Johansson, F. Effects of predator cues carry over from egg and larval stage to adult life-history traits in a damselfly. Freshw. Sci. 39, 804–811 (2020).

    Article 

    Google Scholar 

  • Chivers, D. P., Wisenden, B. D. & Smith, R. J. F. Damselfly larvae learn to recognize predators from chemical cues in the predator’s diet. Anim. Behav. 52, 315–320 (1996).

    Article 

    Google Scholar 

  • Mikolajczuk, P. Stwierdzenie wylotu drugiej generacji tężnicy małej Ischnura pumilio (Charpentier, 1825) i tężnicy wytwornej Ischnura elegans (Vander Linden, 1820) (Odonata: Coenagrionidae) w Polsce środkowo-wschodniej. Odonatrix 1, (2014).

  • De Block, M., Pauwels, K., Van Den Broeck, M., De Meester, L. & Stoks, R. Local genetic adaptation generates latitude-specific effects of warming on predator-prey interactions. Glob. Chang. Biol. 19, 689–696 (2013).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2021).

  • Buskirk, J. V., Krügel, A., Kunz, J., Miss, F. & Stamm, A. The rate of degradation of chemical cues indicating predation risk: an experiment and review. Ethology 120, 942–949 (2014).

    Article 

    Google Scholar 

  • Hagler, J. R. & Jackson, C. G. Methods for marking insects: current techniques and future prospects. Annu. Rev. Entomol. 46, 511–543 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Crumrine, P. W. Size structure and substitutability in an odonate intraguild predation system. Oecologia 145, 132–139 (2005).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Strobbe, F. & Stoks, R. Life history reaction norms to time constraints in a damselfly: differential effects on size and mass. Biol. J. Linn. Soc. 83, 187–196 (2004).

    Article 

    Google Scholar 

  • De Block, M., McPeek, M. A. & Stoks, R. Stronger compensatory growth in a permanent-pond Lestes damselfly relative to temporary-pond Lestes. Oikos 117, 245–254 (2008).

    Article 

    Google Scholar 

  • Marsh, J. B. & Weinstein, D. B. Simple charring method for determination of lipids. J. Lipid Res. 7, 574–576 (1966).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stoks, R., Block, M. D. & McPeek, M. A. Physiological costs of compensatory growth in a damselfly. Ecology 87, 1566–1574 (2006).

    PubMed 
    Article 

    Google Scholar 

  • R Development Core Team. R: The R Project for Statistical Computing. Vienna, Austria https://www.r-project.org/ (2019).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • Cyrus, A. Z., Swiggs, J., Santidrian Tomillo, P., Paladino, F. V. & Peters, W. S. Cannibalism causes size-dependent intraspecific predation pressure but does not trigger autotomy in the intertidal gastropod Agaronia propatula. J. Molluscan Stud. 81, 388–396 (2015).

  • Jara, F. G. Trophic ontogenetic shifts of the dragonfly Rhionaeschna variegata: the role of larvae as predators and prey in Andean wetland communities. Ann. Limnol. 50, 173–184 (2014).

    Article 

    Google Scholar 

  • Fréchette, M. & Lefaivre, D. On self-thinning in animals. Oikos 73, 425–428 (1995).

    Article 

    Google Scholar 

  • Johansson, F., Stoks, R., Rowe, L. & De Block, M. Life history plasticity in a damselfly: effects of combined time and biotic constraints. Ecology 82, 1857–1869 (2001).

    Article 

    Google Scholar 

  • Mikolajewski, D. J., Conrad, A. & Joop, G. Behaviour and body size: plasticity and genotypic diversity in larval Ischnura elegans as a response to predators (Odonata: Coenagrionidae). Int. J. Odonatol. 18, 31–44 (2015).

    Article 

    Google Scholar 

  • Antoł, A. & Sniegula, S. Damselfly eggs alter their development rate in the presence of an invasive alien cue but not a native predator cue. Ecol. Evol. 11, 9361–9369 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hassall, C. & Thompson, D. J. The effects of environmental warming on Odonata: a review. Int. J. Odonatol. 11, 131–153 (2008).

    Article 

    Google Scholar 

  • Debecker, S. & Stoks, R. Pace of life syndrome under warming and pollution: integrating life history, behavior, and physiology across latitudes. Ecol. Monogr. 89, e01332 (2019).

    Article 

    Google Scholar 

  • Anderson, T. L. & Semlitsch, R. D. Top predators and habitat complexity alter an intraguild predation module in pond communities. J. Anim. Ecol. 85, 548–558 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Norling, U. Growth, winter preparations and timing of emergence in temperate zone odonata: control by a succession of larval response patterns. Int. J. Odonatol. 24, 1–36 (2021).

    Article 

    Google Scholar 

  • Abrams, P. A., Leimar, O., Nylin, S. & Wiklund, C. The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. Am. Nat. 147, 381–395 (1996).

    Article 

    Google Scholar 

  • Arendt, J. D. Adaptive intrinsic growth rates: an integration across taxa. Q. Rev. Biol. 72, 149–177 (1997).

    Article 

    Google Scholar 

  • Bobrek, R. Odonate phenology recorded in a Central European location in an extremely warm season. Biologia 76, 2957–2964 (2021).

    Article 

    Google Scholar 

  • Dmitriew, C. M. The evolution of growth trajectories: what limits growth rate?. Biol. Rev. 86, 97–116 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Śniegula, S., Johansson, F. & Nilsson-Örtman, V. Differentiation in developmental rate across geographic regions: a photoperiod driven latitude compensating mechanism?. Oikos 121, 1073–1082 (2012).

    Article 

    Google Scholar 

  • Angell, C. S. et al. Development time mediates the effect of larval diet on ageing and mating success of male antler flies in the wild. Proc. R. Soc. B 287, 20201876 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Johansson, F., Watts, P. C., Sniegula, S. & Berger, D. Natural selection mediated by seasonal time constraints increases the alignment between evolvability and developmental plasticity. Evolution 75, 464–475 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nilsson-Örtman, V. & Rowe, L. The evolution of developmental thresholds and reaction norms for age and size at maturity. PNAS 118, (2021).

  • Rohner, P. T. & Moczek, A. P. Evolutionary and plastic variation in larval growth and digestion reveal the complex underpinnings of size and age at maturation in dung beetles. Ecol. Evol. 11, 15098–15110 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rolff, J., Fellowes, M & Holloway, G. Insect Evolutionary Ecology: Proceedings of the Royal Entomological Society’s 22nd Symposium. (CABI Oxford University Press, 2006).

  • Beukeboom, L. W. Size matters in insects: an introduction. Entomol. Exp. Appl. 166, 2–3 (2018).

    Article 

    Google Scholar 

  • Honěk, A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483–492 (1993).

    Article 

    Google Scholar 

  • Lee, W.-S., Monaghan, P. & Metcalfe, N. B. Experimental demonstration of the growth rate–lifespan trade-off. Proc. R. Soc. B 280, 20122370 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Burraco, P., Díaz-Paniagua, C. & Gomez-Mestre, I. Different effects of accelerated development and enhanced growth on oxidative stress and telomere shortening in amphibian larvae. Sci. Rep. 7, 7494 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dańko, M. J., Dańko, A., Golab, M. J., Stoks, R. & Sniegula, S. Latitudinal and age-specific patterns of larval mortality in the damselfly Lestes sponsa: Senescence before maturity?. Exp. Gerontol. 95, 107–115 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Kong, J. D., Hoffmann, A. A. & Kearney, M. R. Linking thermal adaptation and life-history theory explains latitudinal patterns of voltinism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180547 (2019).

  • Śniegula, S., Gołąb, M. J. & Johansson, F. Time constraint effects on phenology and life history synchrony in a damselfly along a latitudinal gradient. Oikos 125, 414–423 (2016).

    Article 

    Google Scholar 

  • Popova, O. N. & Haritonov, AYu. Disclosure of biotopical groups in the population of the dragonfly Coenagrion armatum (Charpentier, 1840). Contemp. Probl. Ecol. 7, 175–181 (2014).

    Article 

    Google Scholar 

  • Mikolajewski, D. J., De Block, M. & Stoks, R. The interplay of adult and larval time constraints shapes species differences in larval life history. Ecology 96, 1128–1138 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Wolf, J. B. & Wade, M. J. What are maternal effects (and what are they not)? Philos. Trans. R Soc. Lond. B Biol. Sci. 364, 1107–1115 (2009).

  • Zehnder, C. B., Parris, M. A. & Hunter, M. D. Effects of maternal age and environment on offspring vital rates in the Oleander Aphid (Hemiptera: Aphididae). Environ. Entomol. 36, 910–917 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Hernández, C. M., van Daalen, S. F., Caswell, H., Neubert, M. G. & Gribble, K. E. A demographic and evolutionary analysis of maternal effect senescence. PNAS 117, 16431–16437 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shama, L. N. S., Campero-Paz, M., Wegner, K. M., De Block, M. & Stoks, R. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate. Mol. Ecol. 20, 2929–2941 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Sniegula, S., Golab, M. J., Drobniak, S. M. & Johansson, F. Seasonal time constraints reduce genetic variation in life-history traits along a latitudinal gradient. J. Anim. Ecol. 85, 187–198 (2016).

    PubMed 
    Article 

    Google Scholar 

  • De Block, M. & Stoks, R. Adaptive sex-specific life history plasticity to temperature and photoperiod in a damselfly. J. Evol. Biol. 16, 986–995 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Verberk, W. C. E. P. et al. Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biol. Rev. 96, 247–268 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Sheriff, M. J., Peacor, S. D., Hawlena, D. & Thaker, M. Non-consumptive predator effects on prey population size: a dearth of evidence. J. Anim. Ecol. 89, 1302–1316 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Wirsing, A. J., Heithaus, M. R., Brown, J. S., Kotler, B. P. & Schmitz, O. J. The context dependence of non-consumptive predator effects. Ecol. Lett 24, 113–129 (2021).

    PubMed 
    Article 

    Google Scholar 

  • McCauley, S. J., Rowe, L. & Fortin, M.-J. The deadly effects of ‘nonlethal’ predators. Ecology 92, 2043–2048 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Palacios, M. del M. & McCormick, M. I. Positive indirect effects of top-predators on the behaviour and survival of juvenile fishes. Oikos 130, 219–230 (2021).

  • Thaler, J. S., McArt, S. H. & Kaplan, I. Compensatory mechanisms for ameliorating the fundamental trade-off between predator avoidance and foraging. PNAS 109, 12075–12080 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Janssens, L., Van Dievel, M. & Stoks, R. Warming reinforces nonconsumptive predator effects on prey growth, physiology, and body stoichiometry. Ecology 96, 3270–3280 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Hawlena, D. & Schmitz, O. J. Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am. Nat. 176, 537–556 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Nation, J. L. Insect Physiology and Biochemistry. (CRC Press, 2011). doi:https://doi.org/10.1201/9781420061789.

  • Rudolf, V. H. W. & Singh, M. Disentangling climate change effects on species interactions: effects of temperature, phenological shifts, and body size. Oecologia 173, 1043–1052 (2013).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Pfennig, D. W. Effect of predator-prey phylogenetic similarity on the fitness consequences of predation: a trade-off between nutrition and disease?. Am. Nat. 155, 335–345 (2000).

    PubMed 
    Article 

    Google Scholar 

  • Lee, K. P., Simpson, S. J. & Wilson, K. Dietary protein-quality influences melanization and immune function in an insect. Funct. Ecol. 22, 1052–1061 (2008).

    Article 

    Google Scholar 

  • Wu, Q., Patočka, J. & Kuča, K. Insect Antimicrobial Peptides, a Mini Review. Toxins (Basel) 10, 461 (2018).

  • Bullard, B. et al. The molecular elasticity of the insect flight muscle proteins projectin and kettin. PNAS 103, 4451–4456 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mamat-Noorhidayah, Yazawa, K., Numata, K. & Norma-Rashid, Y. Morphological and mechanical properties of flexible resilin joints on damselfly wings (Rhinocypha spp.). PLoS One 13, e0193147 (2018).

  • Muthukrishnan, S., Merzendorfer, H., Arakane, Y. & Kramer, K. J. 7 – Chitin Metabolism in Insects. in Insect Molecular Biology and Biochemistry (ed. Gilbert, L. I.) 193–235 (Academic Press, 2012). doi:https://doi.org/10.1016/B978-0-12-384747-8.10007-8.

  • Van Dievel, M., Stoks, R. & Janssens, L. Beneficial effects of a heat wave: higher growth and immune components driven by a higher food intake. J. Exp. Biol. 220, 3908–3915 (2017).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Genomic basis for early-life mortality in sharpsnout seabream

    Contrasting life-history responses to climate variability in eastern and western North Pacific sardine populations