in

Citizen science helps in the study of fungal diversity in New Jersey

  • Martinez-Garcia, L. B., De Deyn, G. B., Pugnaire, F. I., Kothamasi, D. & van der Heijden, M. G. A. Symbiotic soil fungi enhance ecosystem resilience to climate change. Glob. Chang. Biol. 23, 5228–5236 (2017).

    Article 
    ADS 

    Google Scholar 

  • Averill, C. & Hawkes, C. V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19, 937–947 (2016).

    Article 

    Google Scholar 

  • Cairney, J. W. G. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biol. Biochem. 47, 198–208 (2012).

    Article 
    CAS 

    Google Scholar 

  • Milovic, M., Kebert, M. & Orlovic, S. How mycorrhizas can help forests to cope with ongoing climate change? Sumar. List 145, 279–286 (2021).

    Article 

    Google Scholar 

  • Hawksworth, D. L. & Luecking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 5, 5.4.10 (2017).

    Article 

    Google Scholar 

  • Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).

    Article 
    CAS 

    Google Scholar 

  • Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).

    Article 

    Google Scholar 

  • Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).

    Article 

    Google Scholar 

  • Braghiere, R. K. et al. Modeling global carbon costs of plant nitrogen and phosphorus acquisition. J. Adv. Model. Earth Syst. 14, e2022MS003204 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jaouen, G. et al. Fungi of French Guiana gathered in a taxonomic, environmental and molecular dataset. Sci. Data 6, 206 (2019).

    Article 

    Google Scholar 

  • Beninde, J. et al. CaliPopGen: A genetic and life history database for the fauna and flora of California. Sci. Data 9, 380 (2022).

    Article 

    Google Scholar 

  • Gyeltshen, C. & Prasad, K. Biodiversity checklists for Bhutan. Biodivers. Data J. 10, e83798 (2022).

    Article 

    Google Scholar 

  • Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    Article 
    ADS 

    Google Scholar 

  • Melo, C. D., Walker, C., Freitas, H., Machado, A. C. & Borges, P. A. V. Distribution of arbuscular mycorrhizal fungi (AMF) in Terceira and Sao Miguel Islands (Azores). Biodivers. Data J. 8, e49759 (2020).

    Article 

    Google Scholar 

  • Ordynets, A. et al. Aphyllophoroid fungi in insular woodlands of eastern Ukraine. Biodivers. Data J. 5, e22426 (2017).

    Article 

    Google Scholar 

  • Monteiro, M. et al. A database of the global distribution of alien macrofungi. Biodivers. Data J. 8, e51459 (2020).

    Article 

    Google Scholar 

  • Filippova, N. et al. Yugra State University Biological Collection (Khanty-Mansiysk, Russia): general and digitisation overview. Biodivers. Data J. 10, e77669 (2022).

    Article 

    Google Scholar 

  • Wu, B. et al. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10, 127–140 (2019).

    Article 

    Google Scholar 

  • Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gorczak, M. et al. 18th Congress of European Mycologists Bioblitz 2019 – naturalists contribute to the knowledge of mycobiota and lichenobiota of Białowieża Primeval Forest. Acta Mycol. 55, 1–26 (2020).

    Google Scholar 

  • Goncalves, S. C., Haelewaters, D., Furci, G. & Mueller, G. M. Include all fungi in biodiversity goals. Science 373, 403–403 (2021).

    Article 
    ADS 

    Google Scholar 

  • Hochkirch, A. et al. A strategy for the next decade to address data deficiency in neglected biodiversity. Conserv. Biol. 35, 502–509 (2021).

    Article 

    Google Scholar 

  • Allen, E. B. et al. Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170, 47–62 (1995).

    Article 
    CAS 

    Google Scholar 

  • Mueller, G. M. & Schmit, J. P. Fungal biodiversity: what do we know? What can we predict? Biodivers. Conserv. 16, 1–5 (2007).

    Article 

    Google Scholar 

  • Waters, D. P. & Lendemer, J. C. The lichens and allied fungi of Mercer County, New Jersey. Opusc. Philolichenum 18, 17–51 (2019).

    Google Scholar 

  • Waters, D. P. & Lendemer, J. C. A revised checklist of the lichenized, lichenicolous and allied fungi of New Jersey. Bartonia, 1–62 (2019).

  • Schwarze, C. A. The parasitic fungi of New Jersey. (New Jersey Agricultural Experiment Stations, 1917).

  • Moose, R. A., Schigel, D., Kirby, L. J. & Shumskaya, M. Dead wood fungi in North America: an insight into research and conservation potential. Nat. Conserv. 32, 1–17 (2019).

    Article 

    Google Scholar 

  • Hibbett, D. S. et al. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 111, 509–547 (2007).

    Article 

    Google Scholar 

  • Hibbett, D. The invisible dimension of fungal diversity. Science 351, 1150–1151 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • James, T. Y., Stajich, J. E., Hittinger, C. T. & Rokas, A. Toward a Fully Resolved Fungal Tree of Life. Annu. Rev. Microbiol. 74, 291–313 (2020).

    Article 
    CAS 

    Google Scholar 

  • Braghiere, R. K. et al. Mycorrhizal distributions impact global patterns of carbon and nutrient cycling. Geophys. Res. Lett. 48, e2021GL094514 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bonney, R. et al. Citizen science: A developing tool for expanding science knowledge and scientific literacy. Bioscience 59, 977–984 (2009).

    Article 

    Google Scholar 

  • Van Vliet, K. & Moore, C. Citizen science initiatives: engaging the public and demystifying science. J. Microbiol. Biol. Educ. 17, 13–16 (2016).

    Article 

    Google Scholar 

  • Feldman, M. J. et al. Trends and gaps in the use of citizen science derived data as input for species distribution models: A quantitative review. PLoS One 16, e0234587 (2021).

    Article 
    CAS 

    Google Scholar 

  • Shumskaya, M. et al. Fungi of parks, forests and reserves of New Jersey (2007–2019). Version 1.4. Sampling event dataset. Kean University https://doi.org/10.15468/7scek4 (2022).

  • Heilmann-Clausen, J. et al. How citizen science boosted primary knowledge on fungal biodiversity in Denmark. Biol. Conserv. 237, 366–372 (2019).

    Article 

    Google Scholar 

  • GBIF.Org User. NJMA dataset. GBIF Occurrence Download. GBIF https://doi.org/10.15468/dl.93232n (2022).

  • GBIF.Org User. New Jersey Agaricomycetes. GBIF Occurrence Download. Dataset. GBIF https://doi.org/10.15468/dl.6j6382 (2022).

  • GBIF.Org User. USA Agaricomycetes. GBIF Occurrence Download. GBIF https://doi.org/10.15468/dl.ncukzy (2022).

  • GBIF.Org User. Global records Agaricomycetes. GBIF Occurrence Download. GBIF https://doi.org/10.15468/dl.nk54e7 (2022).

  • Meyke, E. When data management meets project management. Biodivers. Inf. Sci. Stand. 3, e37224 (2019).

    Google Scholar 

  • Wieczorek, J. et al. Darwin Core: an evolving community-developed biodiversity data standard. PLoS One 7, e29715 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pagad, S., Genovesi, P., Carnevali, L., Schigel, D. & McGeoch, M. A. Data Descriptor: introducing the global register of introduced and invasive species. Sci. Data 5, 170102 (2018).

    Article 

    Google Scholar 

  • Registry-Migration.Gbif.Org.GBIF Backbone Taxonomy. GBIF Secretariat. https://doi.org/10.15468/39omei (2021).

  • Mesibov, R. Archived websites: A Data Cleaner’s Cookbook (version 3) and all BASHing data blog posts 1–200. Zenodo https://doi.org/10.5281/zenodo.6423347 (2022).

  • Chamberlain, S. A. & Boettiger, C. R Python, and Ruby clients for GBIF species occurrence data. PeerJ Preprints 5, e3304v3301 (2017).

    Google Scholar 

  • Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.7.1. Available from https://cran.rproject.org/package=rgbif (2022).

  • Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article 

    Google Scholar 

  • Sousa, D. et al. Tree canopies reflect mycorrhizal composition. Geophys. Res. Lett. 48, e2021GL092764 (2021).

    Article 
    ADS 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (2020).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis. https://ggplot2.tidyverse.org (2016).

  • Bederson, B. B., Shneiderman, B. & Wattenberg, M. Ordered and quantum treemaps: Making effective use of 2D space to display hierarchies. ACM Trans. Graph. 21, 833–854 (2002).

    Article 

    Google Scholar 

  • Simpson, H. J. & Schilling, J. S. Using aggregated field collection data and the novel r package fungarium to investigate fungal fire association. Mycologia 113, 842–855 (2021).

    Article 

    Google Scholar 

  • Robertson, T. et al. The GBIF Integrated Publishing Toolkit: Facilitating the efficient publishing of biodiversity data on the Internet. PLoS One 9, e102623 (2014).

    Article 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Methane emissions offset atmospheric carbon dioxide uptake in coastal macroalgae, mixed vegetation and sediment ecosystems

    Strengthening electron-triggered light emission