Martinez-Garcia, L. B., De Deyn, G. B., Pugnaire, F. I., Kothamasi, D. & van der Heijden, M. G. A. Symbiotic soil fungi enhance ecosystem resilience to climate change. Glob. Chang. Biol. 23, 5228–5236 (2017).
Google Scholar
Averill, C. & Hawkes, C. V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19, 937–947 (2016).
Google Scholar
Cairney, J. W. G. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biol. Biochem. 47, 198–208 (2012).
Google Scholar
Milovic, M., Kebert, M. & Orlovic, S. How mycorrhizas can help forests to cope with ongoing climate change? Sumar. List 145, 279–286 (2021).
Google Scholar
Hawksworth, D. L. & Luecking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 5, 5.4.10 (2017).
Google Scholar
Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).
Google Scholar
Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).
Google Scholar
Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).
Google Scholar
van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).
Google Scholar
Braghiere, R. K. et al. Modeling global carbon costs of plant nitrogen and phosphorus acquisition. J. Adv. Model. Earth Syst. 14, e2022MS003204 (2022).
Google Scholar
Jaouen, G. et al. Fungi of French Guiana gathered in a taxonomic, environmental and molecular dataset. Sci. Data 6, 206 (2019).
Google Scholar
Beninde, J. et al. CaliPopGen: A genetic and life history database for the fauna and flora of California. Sci. Data 9, 380 (2022).
Google Scholar
Gyeltshen, C. & Prasad, K. Biodiversity checklists for Bhutan. Biodivers. Data J. 10, e83798 (2022).
Google Scholar
Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).
Google Scholar
Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).
Google Scholar
Melo, C. D., Walker, C., Freitas, H., Machado, A. C. & Borges, P. A. V. Distribution of arbuscular mycorrhizal fungi (AMF) in Terceira and Sao Miguel Islands (Azores). Biodivers. Data J. 8, e49759 (2020).
Google Scholar
Ordynets, A. et al. Aphyllophoroid fungi in insular woodlands of eastern Ukraine. Biodivers. Data J. 5, e22426 (2017).
Google Scholar
Monteiro, M. et al. A database of the global distribution of alien macrofungi. Biodivers. Data J. 8, e51459 (2020).
Google Scholar
Filippova, N. et al. Yugra State University Biological Collection (Khanty-Mansiysk, Russia): general and digitisation overview. Biodivers. Data J. 10, e77669 (2022).
Google Scholar
Wu, B. et al. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10, 127–140 (2019).
Google Scholar
Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).
Google Scholar
Gorczak, M. et al. 18th Congress of European Mycologists Bioblitz 2019 – naturalists contribute to the knowledge of mycobiota and lichenobiota of Białowieża Primeval Forest. Acta Mycol. 55, 1–26 (2020).
Goncalves, S. C., Haelewaters, D., Furci, G. & Mueller, G. M. Include all fungi in biodiversity goals. Science 373, 403–403 (2021).
Google Scholar
Hochkirch, A. et al. A strategy for the next decade to address data deficiency in neglected biodiversity. Conserv. Biol. 35, 502–509 (2021).
Google Scholar
Allen, E. B. et al. Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170, 47–62 (1995).
Google Scholar
Mueller, G. M. & Schmit, J. P. Fungal biodiversity: what do we know? What can we predict? Biodivers. Conserv. 16, 1–5 (2007).
Google Scholar
Waters, D. P. & Lendemer, J. C. The lichens and allied fungi of Mercer County, New Jersey. Opusc. Philolichenum 18, 17–51 (2019).
Waters, D. P. & Lendemer, J. C. A revised checklist of the lichenized, lichenicolous and allied fungi of New Jersey. Bartonia, 1–62 (2019).
Schwarze, C. A. The parasitic fungi of New Jersey. (New Jersey Agricultural Experiment Stations, 1917).
Moose, R. A., Schigel, D., Kirby, L. J. & Shumskaya, M. Dead wood fungi in North America: an insight into research and conservation potential. Nat. Conserv. 32, 1–17 (2019).
Google Scholar
Hibbett, D. S. et al. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 111, 509–547 (2007).
Google Scholar
Hibbett, D. The invisible dimension of fungal diversity. Science 351, 1150–1151 (2016).
Google Scholar
James, T. Y., Stajich, J. E., Hittinger, C. T. & Rokas, A. Toward a Fully Resolved Fungal Tree of Life. Annu. Rev. Microbiol. 74, 291–313 (2020).
Google Scholar
Braghiere, R. K. et al. Mycorrhizal distributions impact global patterns of carbon and nutrient cycling. Geophys. Res. Lett. 48, e2021GL094514 (2021).
Google Scholar
Bonney, R. et al. Citizen science: A developing tool for expanding science knowledge and scientific literacy. Bioscience 59, 977–984 (2009).
Google Scholar
Van Vliet, K. & Moore, C. Citizen science initiatives: engaging the public and demystifying science. J. Microbiol. Biol. Educ. 17, 13–16 (2016).
Google Scholar
Feldman, M. J. et al. Trends and gaps in the use of citizen science derived data as input for species distribution models: A quantitative review. PLoS One 16, e0234587 (2021).
Google Scholar
Shumskaya, M. et al. Fungi of parks, forests and reserves of New Jersey (2007–2019). Version 1.4. Sampling event dataset. Kean University https://doi.org/10.15468/7scek4 (2022).
Heilmann-Clausen, J. et al. How citizen science boosted primary knowledge on fungal biodiversity in Denmark. Biol. Conserv. 237, 366–372 (2019).
Google Scholar
GBIF.Org User. NJMA dataset. GBIF Occurrence Download. GBIF https://doi.org/10.15468/dl.93232n (2022).
GBIF.Org User. New Jersey Agaricomycetes. GBIF Occurrence Download. Dataset. GBIF https://doi.org/10.15468/dl.6j6382 (2022).
GBIF.Org User. USA Agaricomycetes. GBIF Occurrence Download. GBIF https://doi.org/10.15468/dl.ncukzy (2022).
GBIF.Org User. Global records Agaricomycetes. GBIF Occurrence Download. GBIF https://doi.org/10.15468/dl.nk54e7 (2022).
Meyke, E. When data management meets project management. Biodivers. Inf. Sci. Stand. 3, e37224 (2019).
Wieczorek, J. et al. Darwin Core: an evolving community-developed biodiversity data standard. PLoS One 7, e29715 (2012).
Google Scholar
Pagad, S., Genovesi, P., Carnevali, L., Schigel, D. & McGeoch, M. A. Data Descriptor: introducing the global register of introduced and invasive species. Sci. Data 5, 170102 (2018).
Google Scholar
Registry-Migration.Gbif.Org.GBIF Backbone Taxonomy. GBIF Secretariat. https://doi.org/10.15468/39omei (2021).
Mesibov, R. Archived websites: A Data Cleaner’s Cookbook (version 3) and all BASHing data blog posts 1–200. Zenodo https://doi.org/10.5281/zenodo.6423347 (2022).
Chamberlain, S. A. & Boettiger, C. R Python, and Ruby clients for GBIF species occurrence data. PeerJ Preprints 5, e3304v3301 (2017).
Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.7.1. Available from https://cran.rproject.org/package=rgbif (2022).
Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
Google Scholar
Sousa, D. et al. Tree canopies reflect mycorrhizal composition. Geophys. Res. Lett. 48, e2021GL092764 (2021).
Google Scholar
R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (2020).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. https://ggplot2.tidyverse.org (2016).
Bederson, B. B., Shneiderman, B. & Wattenberg, M. Ordered and quantum treemaps: Making effective use of 2D space to display hierarchies. ACM Trans. Graph. 21, 833–854 (2002).
Google Scholar
Simpson, H. J. & Schilling, J. S. Using aggregated field collection data and the novel r package fungarium to investigate fungal fire association. Mycologia 113, 842–855 (2021).
Google Scholar
Robertson, T. et al. The GBIF Integrated Publishing Toolkit: Facilitating the efficient publishing of biodiversity data on the Internet. PLoS One 9, e102623 (2014).
Google Scholar
Source: Ecology - nature.com