in

Climate change as a global amplifier of human–wildlife conflict

  • Abrahms, B. Human–wildlife conflict under climate change. Science 373, 484–485 (2021).

    Article 
    CAS 

    Google Scholar 

  • Nyhus, P. J. Human–wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).

    Article 

    Google Scholar 

  • Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl Acad. Sci. USA 114, 10678–10683 (2017).

    Article 
    CAS 

    Google Scholar 

  • Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    Article 
    CAS 

    Google Scholar 

  • Abrahms, B. et al. Data from: Climate change as an amplifier of human–wildlife conflict. Github https://github.com/Abrahms-Lab/Climate-Conflict-Review (2022).

  • IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Sydeman, W. J., Santora, J. A., Thompson, S. A., Marinovic, B. & Lorenzo, E. D. Increasing variance in North Pacific climate relates to unprecedented ecosystem variability off California. Glob. Change Biol. 19, 1662–1675 (2013).

    Article 

    Google Scholar 

  • Wang, G. et al. Continued increase of extreme El Niño frequency long after 1.5 °C warming stabilization. Nat. Clim. Change 7, 568–572 (2017).

    Article 

    Google Scholar 

  • Filazzola, A., Blagrave, K., Imrit, M. A. & Sharma, S. Climate change drives increases in extreme events for lake ice in the Northern Hemisphere. Geophys. Res. Lett. 47, e2020GL089608 (2020).

  • Marzeion, B., Cogley, J. G., Richter, K. & Parkes, D. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345, 919–921 (2014).

    Article 
    CAS 

    Google Scholar 

  • Martin, J. T. et al. Increased drought severity tracks warming in the United States’ largest river basin. Proc. Natl Acad. Sci. USA 117, 11328–11336 (2020).

    Article 
    CAS 

    Google Scholar 

  • Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).

    Article 

    Google Scholar 

  • Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).

    Article 

    Google Scholar 

  • Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    Article 
    CAS 

    Google Scholar 

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article 

    Google Scholar 

  • Lin, D., Xia, J. & Wan, S. Climate warming and biomass accumulation of terrestrial plants: a meta‐analysis. New Phytol. 188, 187–198 (2010).

    Article 

    Google Scholar 

  • Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Change 10, 406–415 (2020).

    Article 

    Google Scholar 

  • Marinovic, B. B., Croll, D. A., Gong, N., Benson, S. R. & Chavez, F. P. Effects of the 1997–1999 El Niño and La Niña events on zooplankton abundance and euphausiid community composition within the Monterey Bay coastal upwelling system. Prog. Oceanogr. 54, 265–277 (2002).

    Article 

    Google Scholar 

  • Kardol, P. et al. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old‐field ecosystem. Glob. Change Biol. 16, 2676–2687 (2010).

    Article 

    Google Scholar 

  • Prugh, L. R. et al. Ecological winners and losers of extreme drought in California. Nat. Clim. Change 8, 819–824 (2018).

    Article 

    Google Scholar 

  • Sorte, C. J. B., Williams, S. L. & Zerebecki, R. A. Ocean warming increases threat of invasive species in a marine fouling community. Ecology 91, 2198–2204 (2010).

    Article 

    Google Scholar 

  • Muehlenbein, M. P. Human–environment interactions, current and future directions. Hum. Environ. Interact. 1, 79–94 (2012).

    Google Scholar 

  • Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).

    Article 
    CAS 

    Google Scholar 

  • Mason, T. H. E., Keane, A., Redpath, S. M. & Bunnefeld, N. The changing environment of conservation conflict: geese and farming in Scotland. J. Appl. Ecol. 55, 651–662 (2018).

    Article 

    Google Scholar 

  • Pérez-Flores, J., Mardero, S., López-Cen, A., Contreras-Moreno, F. M. & Pérez-Flores, J. Human–wildlife conflicts and drought in the greater Calakmul Region, Mexico: implications for tapir conservation. Neotrop. Biol. Conserv. 16, 539–563 (2021).

    Article 

    Google Scholar 

  • Mariki, S. B., Svarstad, H. & Benjaminsen, T. A. Elephants over the cliff: explaining wildlife killings in Tanzania. Land Use Policy 44, 19–30 (2015).

    Article 

    Google Scholar 

  • Mukeka, J. M., Ogutu, J. O., Kanga, E. & Roskaft, E. Spatial and temporal dynamics of human–wildlife conflicts in the Kenya Greater Tsavo Ecosystem. Hum. Wildl. Interact. 14, 255–272 (2020).

    Google Scholar 

  • Popp, J. N., Hamr, J., Chan, C. & Mallory, F. F. Elk (Cervus elaphus) railway mortality in Ontario. Can. J. Zool. 96, 1066–1070 (2018).

    Article 

    Google Scholar 

  • Olson, D. D. et al. How does variation in winter weather affect deer–vehicle collision rates? Wildl. Biol. 21, 80–87 (2015).

    Article 

    Google Scholar 

  • Nyhus, P. & Tilson, R. Agroforestry, elephants, and tigers: balancing conservation theory and practice in human-dominated landscapes of Southeast Asia. Agric. Ecosyst. Environ. 104, 87–97 (2004).

    Article 

    Google Scholar 

  • Laufenberg, J. S., Johnson, H. E., Doherty, P. F. & Breck, S. W. Compounding effects of human development and a natural food shortage on a black bear population along a human development–wildland interface. Biol. Conserv 224, 188–198 (2018).

    Article 

    Google Scholar 

  • Blondin, H., Abrahms, B., Crowder, L. B. & Hazen, E. L. Combining high temporal resolution whale distribution and vessel tracking data improves estimates of ship strike risk. Biol. Conserv. 250, 108757 (2020).

    Article 

    Google Scholar 

  • Abrahms, B. et al. Dynamic ensemble models to predict distributions and anthropogenic risk exposure for highly mobile species. Divers. Distrib. 25, 1182–1193 (2019).

    Article 

    Google Scholar 

  • Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).

    Article 
    CAS 

    Google Scholar 

  • Kabir, M., Ghoddousi, A., Awan, M. S. & Awan, M. N. Assessment of human–leopard conflict in Machiara National Park, Azad Jammu and Kashmir, Pakistan. Eur. J. Wildl. Res. 60, 291–296 (2014).

    Article 

    Google Scholar 

  • Soto, J. R. Patterns and Determinants of Human–Carnivore Conflicts in the Tropical Lowlands of Guatemala (Univ. of Florida, 2008).

  • Honda, T. & Kozakai, C. Mechanisms of human–black bear conflicts in Japan: in preparation for climate change. Sci. Total Environ. 739, 140028 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mukeka, J. M., Ogutu, J. O., Kanga, E. & Røskaft, E. Human–wildlife conflicts and their correlates in Narok County, Kenya. Glob. Ecol. Conserv. 18, e00620 (2019).

    Article 

    Google Scholar 

  • Kuiper, T. R. et al. Seasonal herding practices influence predation on domestic stock by African lions along a protected area boundary. Biol. Conserv. 191, 546–554 (2015).

    Article 

    Google Scholar 

  • Funston, P. J., Mills, M. G. L. & Biggs, H. C. Factors affecting the hunting success of male and female lions in the Kruger National Park. J. Zool. 253, 419–431 (2001).

    Article 

    Google Scholar 

  • Schiess-Meier, M., Ramsauer, S., Gabanapelo, T. & Konig, B. Livestock predation—insights from problem animal control registers in Botswana. J. Wildl. Manag. 71, 1267–1274 (2007).

    Article 

    Google Scholar 

  • Wilder, J. M. et al. Polar bear attacks on humans: implications of a changing climate. Wildl. Soc. B 41, 537–547 (2017).

    Article 

    Google Scholar 

  • Towns, L., Derocher, A. E., Stirling, I., Lunn, N. J. & Hedman, D. Spatial and temporal patterns of problem polar bears in Churchill, Manitoba. Polar Biol. 32, 1529–1537 (2009).

    Article 

    Google Scholar 

  • Schmidt, A. & Clark, D. ‘It’s just a matter of time:’ lessons from agency and community responses to polar bear-inflicted human injury. Conserv. Soc. 16, 64 (2018).

    Article 

    Google Scholar 

  • Koenig, J., Shine, R. & Shea, G. The dangers of life in the city: patterns of activity, injury and mortality in suburban lizards (Tiliqua scincoides). J. Herpetol. 36, 62–68 (2002).

    Article 

    Google Scholar 

  • Whitaker, P. B. & Shine, R. Responses of free-ranging brownsnakes (Pseudonaja textilis: Elapidae) to encounters with humans. Wildl. Res. 26, 689–704 (1999).

    Article 

    Google Scholar 

  • Saberwal, V., Gibbs, J., Chellam, R. & Johnsingh, A. Lion–human conflict in the Gir Forest, India. Conserv. Biol. 8, 501–507 (1994).

    Article 

    Google Scholar 

  • Ferreira, S. M. & Viljoen, P. African large carnivore population changes in response to a drought. Afr. J. Wildl. Res. https://hdl.handle.net/10520/ejc-wild2-v52-n1-a1 (2022).

  • Masiaine, S. et al. Landscape-level changes to large mammal space use in response to a pastoralist incursion. Ecol. Indic. 121, 107091 (2021).

    Article 

    Google Scholar 

  • Kiria, E. A Spatial Multi-criteria Analysis of Land Use, Land Cover and Climate Changes on Wildlife Ecosystems Planning and Management in Meru Conservation Area (Chuka Univ., 2018).

  • Benansio, J., Demaya, G., Dendi, D. & Luiselli, L. Attacks by Nile crocodiles (Crocodylus nilotticus) on humans and livestock in the Sudd wetlands, South Sudan. Russ. J. Herpetol. https://doi.org/10.30906/1026-2296-2022-29-4-199-205 (2022).

  • Melia, N., Haines, K. & Hawkins, E. Sea ice decline and 21st century trans‐Arctic shipping routes. Geophys. Res. Lett. 43, 9720–9728 (2016).

    Article 

    Google Scholar 

  • Ivanova, S. V. et al. Shipping alters the movement and behavior of Arctic cod (Boreogadus saida), a keystone fish in Arctic marine ecosystems. Ecol. Appl. 30, e02050 (2020).

    Article 

    Google Scholar 

  • Hauser, D. D. W., Laidre, K. L. & Stern, H. L. Vulnerability of Arctic marine mammals to vessel traffic in the increasingly ice-free Northwest Passage and Northern Sea Route. Proc. Natl Acad. Sci. USA 5, 201803543–201803546 (2018).

    Google Scholar 

  • Hovelsrud, G. K., McKenna, M. & Huntington, H. P. Marine mammal harvests and other interactions with humans. Ecol. Appl. 18, S135–S147 (2008).

    Article 

    Google Scholar 

  • Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 536 (2020).

  • Samhouri, J. F. et al. Marine heatwave challenges solutions to human–wildlife conflict. Proc. R. Soc. B 288, 20211607 (2021).

    Article 

    Google Scholar 

  • Chapman, B. K. & McPhee, D. Global shark attack hotspots: identifying underlying factors behind increased unprovoked shark bite incidence. Ocean Coast. Manag. 133, 72–84 (2016).

    Article 

    Google Scholar 

  • Burgess, G., Buch, R., Carvalho, F., Garner, B. & Walker, C. in Sharks and Their Relatives II: Biodiversity, Adaptive Physiology, and Conservation (eds Carrier, J. C. et al.) 541–565 (CRC Press, 2010).

  • Woodward, A. R., Leone, E. H., Dutton, H. J., Waller, J. E. & Hord, L. Characteristics of American alligator bites on people in Florida. J. Wildl. Manag. 83, 1437–1453 (2019).

    Article 

    Google Scholar 

  • Khorozyan, I., Soofi, M., Ghoddousi, A., Hamidi, A. K. & Waltert, M. The relationship between climate, diseases of domestic animals and human–carnivore conflicts. Basic Appl. Ecol. 16, 703–713 (2015).

    Article 

    Google Scholar 

  • Treves, A. & Bruskotter, J. Tolerance for predatory wildlife. Science 344, 476–477 (2014).

    Article 
    CAS 

    Google Scholar 

  • Carpenter, S. Exploring the impact of climate change on the future of community‐based wildlife conservation. Conserv. Sci. Pract. 4, e585 (2022).

  • Nisi, A. Cryptic Neighbors: Connecting Movement Ecology and Population Dynamics for a Large Carnivore in a Human-dominated Landscape (Univ. California, 2021). .

  • Asiyanbi, A. P. A political ecology of REDD+: property rights, militarised protectionism, and carbonised exclusion in Cross River. Geoforum 77, 146–156 (2016).

    Article 

    Google Scholar 

  • Dawson, N. M. et al. Barriers to equity in REDD+: deficiencies in national interpretation processes constrain adaptation to context. Environ. Sci. Policy 88, 1–9 (2018).

    Article 

    Google Scholar 

  • Rabaiotti, D. et al. High temperatures and human pressures interact to influence mortality in an African carnivore. Ecol. Evol. 11, 8495–8506 (2021).

    Article 

    Google Scholar 

  • Vargas, S. P., Castro-Carrasco, P. J., Rust, N. A. & F, J. L. R. Climate change contributing to conflicts between livestock farming and guanaco conservation in central Chile: a subjective theories approach. Oryx 55, 275–283 (2021).

    Article 

    Google Scholar 

  • Heemskerk, S. et al. Temporal dynamics of human–polar bear conflicts in Churchill, Manitoba. Glob. Ecol. Conserv. 24, e01320 (2020).

    Article 

    Google Scholar 

  • Schell, C. J. et al. The evolutionary consequences of human–wildlife conflict in cities. Evol. Appl. 14, 178–197 (2021).

    Article 

    Google Scholar 

  • Clark, J. A. & May, R. M. Taxonomic bias in conservation research. Science 297, 191–192 (2002).

    Article 
    CAS 

    Google Scholar 

  • Ravenelle, J. & Nyhus, P. J. Global patterns and trends in human–wildlife conflict compensation. Conserv. Biol. 31, 1247–1256 (2017).

    Article 

    Google Scholar 

  • Zack, C. S., Milne, B. T. & Dunn, W. Southern oscillation index as an indicator of encounters between humans and black bears in New Mexico. Wildl. Soc. Bull. 31, 517–520 (2003).

    Google Scholar 

  • Acosta-Jamett, G., Gutiérrez, J. R., Kelt, D. A., Meserve, P. L. & Previtali, M. A. El Niño Southern Oscillation drives conflict between wild carnivores and livestock farmers in a semiarid area in Chile. J. Arid. Environ. 126, 76–80 (2016).

    Article 

    Google Scholar 

  • Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O. & Brashares, J. S. Accelerated human population growth at protected area edges. Science 321, 123–126 (2008).

    Article 
    CAS 

    Google Scholar 

  • Powell, G., Versluys, T. M. M., Williams, J. J., Tiedt, S. & Pooley, S. Using environmental niche modelling to investigate abiotic predictors of crocodilian attacks on people. Oryx 54, 639–647 (2020).

    Article 

    Google Scholar 

  • Maxwell, S. M. et al. Dynamic ocean management: defining and conceptualizing real-time management of the ocean. Mar. Policy 58, 42–50 (2015).

    Article 

    Google Scholar 

  • Maxwell, S. M., Gjerde, K. M., Conners, M. G. & Crowder, L. B. Mobile protected areas for biodiversity on the high seas. Science 367, 252–254 (2020).

    Article 
    CAS 

    Google Scholar 

  • Pons, M. et al. Trade-offs between bycatch and target catches in static versus dynamic fishery closures. Proc. Natl Acad. Sci. USA 119, e2114508119 (2022).

    Article 

    Google Scholar 

  • Oestreich, W. K., Chapman, M. S. & Crowder, L. B. A comparative analysis of dynamic management in marine and terrestrial systems. Front. Ecol. Environ. 18, 496–504 (2020).

    Article 

    Google Scholar 

  • Mason, N., Ward, M., Watson, J. E. M., Venter, O. & Runting, R. K. Global opportunities and challenges for transboundary conservation. Nat. Ecol. Evol. 4, 694–701 (2020).

    Article 

    Google Scholar 

  • Dickman, A. J., Macdonald, E. A. & Macdonald, D. W. A review of financial instruments to pay for predator conservation and encourage human–carnivore coexistence. Proc. Natl Acad. Sci. USA 108, 13937–13944 (2011).

    Article 
    CAS 

    Google Scholar 

  • Ej, N. G. et al. A Future for All: The Need for Human–Wildlife Coexistence (UNEP, 2021).

  • Lankford, A. J., Svancara, L. K., Lawler, J. J. & Vierling, K. Comparison of climate change vulnerability assessments for wildlife. Wildl. Soc. Bull. 38, 386–394 (2014).

    Article 

    Google Scholar 

  • Syombua, M. An Analysis of Human–Wildlife Conflicts in Tsavo West-Amboseli Agro-Ecosystem Using an Integrated Geospatial Approach: A Case Study of Taveta District (Univ. of Nairobi, 2013).

  • Malhi, Y. et al. The role of large wild animals in climate change mitigation and adaptation. Curr. Biol. 32, R181–R196 (2022).

    Article 
    CAS 

    Google Scholar 

  • Aryal, A., Brunton, D. & Raubenheimer, D. Impact of climate change on human–wildlife–ecosystem interactions in the Trans-Himalaya region of Nepal. Theor. Appl. Climatol. 115, 517–529 (2013).

    Article 

    Google Scholar 

  • Aryal, A., Brunton, D., Ji, W., Barraclough, R. K. & Raubenheimer, D. Human–carnivore conflict: ecological and economical sustainability of predation on livestock by snow leopard and other carnivores in the Himalaya. Sustain. Sci. 9, 321–329 (2014).

    Article 

    Google Scholar 

  • Aryal, A. et al. Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecol. Evol. 6, 4065–4075 (2016).

    Article 

    Google Scholar 

  • Nowell, K., Li, J., Paltsyn, M. & Sharma, R. An Ounce of Prevention: Snow Leopard Crime Revisited (Traffic Report, 2016).


  • Source: Ecology - nature.com

    Composition, structure and robustness of Lichen guilds

    Q&A: Tod Machover on “Overstory Overture,” his new operatic work