in

Development of an array of molecular tools for the identification of khapra beetle (Trogoderma granarium), a destructive beetle of stored food products

  • Finkelman, S., Navarro, S., Rindner, M. & Dias, R. Effect of low pressure on the survival of Trogoderma granarium Everts, Lasioderma serricorne (F.) and Oryzaephilus surinamensis (L.) at 30°C. J. Stored. Prod. Res. 42, 23–30 (2006).

    Article 

    Google Scholar 

  • Hosseininaveh, V., Bandani, A., Azmayeshfard, P., Hosseinkhani, S. & Kazzazi, M. Digestive proteolytic and amylolytic activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). J. Stored. Prod. Res. 43, 515–522 (2007).

    Article 
    CAS 

    Google Scholar 

  • Burges, H. D. Development of the khapra beetle, Trogoderma granarium, in the lower part of its temperature range. J. Stored. Prod. Res. 44, 32–35 (2008).

    Article 

    Google Scholar 

  • Hagstrum, D. W. & Subramanyam, B. Stored-Product Insect Resource 1–518 (AACC International Inc, 2009).

    Book 

    Google Scholar 

  • Beal, R. S. Synopsis of the economic species of Trogoderma occurring in the United States with description of a new species (Coleoptera: Dermestidae). Ann. Entomol. Soc. Am. 49, 559–566 (1956).

    Article 

    Google Scholar 

  • Day, C. & White, B. Khapra beetle, Trogoderma granarium interceptions and eradications in Australia and around the world. Crawley, School of Agricultural and Resource Economics, University of Western Australia, SARE Working paper 1609, (2016).

  • Kerr, J. A. Khapra beetle returns. Pest Control 49, 24–25 (1981).

    Google Scholar 

  • Stibick, J.N. New pest response guidelines: khapra beetle. US Department of Agriculture, Marketing and Regulatory Programs, Animal and Plant Health Inspection Service, Riverdale, pp. 114 (2009).

  • Myers, S. W. & Hagstrum, D. W. Quarantine. In Stored Product Protection (eds Hagstrum, D. W. et al.) 297–304 (Kansas State University Agricultural Experiment Station and Cooperative Extension Service, 2012).

    Google Scholar 

  • Athanassiou, C. G., Phillips, T. W. & Wakil, W. Biology and control of the khapra beetle, Trogoderma granarium, a major quarantine threat to global food security. Annu. Rev. Entomol. 64, 131–148 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barak, A. V. Development of a new trap to detect and monitor khapra beetle (Coleoptera: Dermestidae). J. Econ. Entom. 82, 1470–1477 (1989).

    Article 

    Google Scholar 

  • Gerken, A. R. & Campbell, J. F. Life history changes in Trogoderma variabile and T. inclusum due to mating delay with implications for mating disruption as a management tactic. Ecol. Evol. 8, 2428–2439 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Partida, G. J. & Strong, R. G. Comparative studies on the biologies of six species of Trogoderma: T variabile. Ann. Entomol. Soc. Am. 68, 115–125 (1975).

    Article 

    Google Scholar 

  • Strong, R. G. Comparative studies on the biologies of six species of Trogoderma: T inclusum. Ann. Entomol. Soc. Am. 68, 91–104 (1975).

    Article 

    Google Scholar 

  • Phillips, T. W., Pfannenstiel, L. & Hagstrum, D. Survey of Trogoderma species (Coleoptera: Dermestidae) associated with international trade of dried distiller’s grains and solubles in the USA. Julius Kühn Archiv. 463, 233–238 (2008).

    Google Scholar 

  • Hadaway, A. The biology of the beetles, Trogoderma granarium Everts and Trogoderma versicolor (Creutz). Bull. Entomol. Res. 46, 781–796 (1956).

    Article 
    CAS 

    Google Scholar 

  • Phillips, T.W., Pfannenstiel, L. & Hagstrum, D. Survey of Trogoderma species (Coleoptera: Dermestidae) associated with international trade of dried distiller’s grains and solubles in the USA. In: Adler CS, Opit G, Fürstenau B, Müller-Blenkle C, Kern P, Arthur FH et al., editors. Proceedings of the 12th International Working Conference on Stored Product Protection; Vol. 1, Quedlinburg, Julius-Kühn-Archiv, pp. 233–238 (2018).

  • Gorham, J.R. Insect and Mite Pests in Food: An Illustrated Key. Vol. 1 and 2. US Department of Agriculture, Agricultural Research Service (1991).

  • Olson, R. L. O., Farris, R. E., Barr, N. B. & Cognato, A. I. Molecular identification of Trogoderma granarium (Coleoptera: Dermestidae) using the 16S gene. J. Pest Sci. 87, 701–710 (2014).

    Article 

    Google Scholar 

  • Furui, S., Miyanoshita, A., Imamura, T., Minegishi, Y. & Kokutani, R. Qualitative real-time PCR identification of the khapra beetle, Trogoderma granarium (Coleoptera: Dermestidae). Appl. Entomol. Zool. 54, 101–107 (2019).

    Article 
    CAS 

    Google Scholar 

  • Rako, L. et al. A LAMP (loop-mediated isothermal amplification) test for rapid identification of Khapra beetle (Trogoderma granarium). Pest Manag. Sci. 77, 5509–5521 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castañé, C., Agustí, N., del Estal, P. & Riudavets, J. Survey of Trogoderma spp. in Spanish mills and warehouses. J. Stored. Prod. Res. 88, 101661 (2020).

    Article 

    Google Scholar 

  • Trujillo-González, et al. Detection of khapra beetle environmental DNA using portable technologies in Australian biosecurity. Front. Insect Sci. 2, e795379 (2022).

    Article 

    Google Scholar 

  • Svec, D., Tichopad, A., Novosadova, V., Pfaffl, M. W. & Kubista, M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol. Detect. Quantif. 3, 9–16 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taylor, S. C. et al. The Ultimate qPCR experiment: Producing publication quality, reproducible data the first time. Trends Biotechnol. 37, 761–774 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Van Holm, W. et al. A viability quantitative PCR dilemma: Are longer amplicons better?. Appl. Environ. Microbiol. 87, e0265320 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system (wwwbarcodinglifeorg). Mol. Ecol. Notes 7, 355–364 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wittwer, C. T. & Kusakawa, N. Real-time PCR. In Molecular microbiology: Diagnostic principles and practice (eds Persing, D. H. et al.) 71–84 (ASM Press, 2004).

    Google Scholar 

  • Stewart, D. et al. A needle in a haystack: A multigene TaqMan assay for the detection of Asian gypsy moths in bulk pheromone trap samples. Biol. Invasions 21, 1843–1856 (2019).

    Article 

    Google Scholar 

  • Butterwort, V. et al. A DNA extraction method for insects from sticky traps: Targeting a low abundance pest, Phthorimaea absoluta (Lepidoptera: Gelechiidae), in mixed species communities. J. Econ. Entom. 115, 844–851 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carew, M. E., Coleman, R. A. & Hoffmann, A. A. Can non-destructive DNA extraction of bulk invertebrate samples be used for metabarcoding?. PeerJ 6, e4980 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Domingue, M.J. et al. Outcome of direct competition between Trogoderma granarium and Trogoderma inclusum over varying commodities, temperatures, and experimental duration. In Submission to Scientific Reports.

  • Zieritz, A. et al. Development and evaluation of hotshot protocols for cost- and time-effective extraction of PCR-ready DNA from single freshwater mussel larvae (Bivalvia: Unionida). J. Molluscan Stud. 84, 198–201 (2018).

    Article 

    Google Scholar 

  • Djoumad, A. et al. Development of a qPCR-based method for counting overwintering spruce budworm (Choristoneura fumiferana) larvae collected during fall surveys and for assessing their natural enemy load: A proof-of-concept study. Pest Manag. Sci. 78, 336–343 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, H., Rangasamy, M., Tan, S. Y., Wang, H. & Siegfried, B. D. Evaluation of five methods for total DNA extraction from western corn rootworm beetles. PLoS ONE 5, e11963 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beckmann, J. S. & Soller, M. Restriction fragment length polymorphisms in genetic improvement: Methodologies, mapping and costs. Theor. Appl. Genet. 67, 35–43 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arimoto, M., Satoh, M., Uesugi, R. & Osakabe, M. PCR-RFLP analysis for identification of Tetranychus spider mite species (Acari: Tetranychidae). J. Econ. Entom. 106, 661–668 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vezenegho, S. B. et al. Discrimination of 15 Amazonian anopheline mosquito species by polymerase chain reaction—Restriction fragment length polymorphism. J. Med. Entomol. 59, 1060–1064 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beal, R. S. Annotated checklist of Nearctic Dermestidae with revised key to the genera. Coleopt. Bull. 57, 391–404 (2003).

    Article 

    Google Scholar 

  • Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, H. & Mottern, J. An old remedy for a new problem? Identification of Ooencyrtus kuvanae (Hymenoptera: Encyrtidae), an egg parasitoid of Lycorma delicatula (Hemiptera: Fulgoridae) in North America. J. Insect Sci. 17, 18 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simon, C. et al. Evolution, weighing, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).

    Article 
    CAS 

    Google Scholar 

  • Dowton, M. & Austin, A. D. Evidence for AT-transversion bias in wasp (Hymenoptera: Symphyta) mitochondrial genes and its implications for the origin of parasitism. J. Mol. Evol. 44, 398–405 (1997).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Untergasser, A. et al. Primer3—New capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).

    Article 
    CAS 

    Google Scholar 

  • Süss, B., Flekna, G., Wagner, M. & Hein, I. Studying the effect of single mismatches in primer and probe binding regions on amplification curves and quantification in real-time PCR. J. Microbiol. Methods 76, 316–319 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Stadhouders, R. et al. The effect of primer-template mismatches on the detection and quantification of nucleic acids using the 5’ nuclease assay. J. Mol. Diagn. 12, 109–117 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stewart, D. et al. A multi-species TaqMan PCR assay for the identification of Asian gypsy moths (Lymantria spp.) and other invasive Lymantriines of biosecurity concern to North America. PLoS ONE 11, e0160878 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 1–12 (2009).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Composition, structure and robustness of Lichen guilds

    Q&A: Tod Machover on “Overstory Overture,” his new operatic work