Finkelman, S., Navarro, S., Rindner, M. & Dias, R. Effect of low pressure on the survival of Trogoderma granarium Everts, Lasioderma serricorne (F.) and Oryzaephilus surinamensis (L.) at 30°C. J. Stored. Prod. Res. 42, 23–30 (2006).
Google Scholar
Hosseininaveh, V., Bandani, A., Azmayeshfard, P., Hosseinkhani, S. & Kazzazi, M. Digestive proteolytic and amylolytic activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). J. Stored. Prod. Res. 43, 515–522 (2007).
Google Scholar
Burges, H. D. Development of the khapra beetle, Trogoderma granarium, in the lower part of its temperature range. J. Stored. Prod. Res. 44, 32–35 (2008).
Google Scholar
Hagstrum, D. W. & Subramanyam, B. Stored-Product Insect Resource 1–518 (AACC International Inc, 2009).
Google Scholar
Beal, R. S. Synopsis of the economic species of Trogoderma occurring in the United States with description of a new species (Coleoptera: Dermestidae). Ann. Entomol. Soc. Am. 49, 559–566 (1956).
Google Scholar
Day, C. & White, B. Khapra beetle, Trogoderma granarium interceptions and eradications in Australia and around the world. Crawley, School of Agricultural and Resource Economics, University of Western Australia, SARE Working paper 1609, (2016).
Kerr, J. A. Khapra beetle returns. Pest Control 49, 24–25 (1981).
Stibick, J.N. New pest response guidelines: khapra beetle. US Department of Agriculture, Marketing and Regulatory Programs, Animal and Plant Health Inspection Service, Riverdale, pp. 114 (2009).
Myers, S. W. & Hagstrum, D. W. Quarantine. In Stored Product Protection (eds Hagstrum, D. W. et al.) 297–304 (Kansas State University Agricultural Experiment Station and Cooperative Extension Service, 2012).
Athanassiou, C. G., Phillips, T. W. & Wakil, W. Biology and control of the khapra beetle, Trogoderma granarium, a major quarantine threat to global food security. Annu. Rev. Entomol. 64, 131–148 (2019).
Google Scholar
Barak, A. V. Development of a new trap to detect and monitor khapra beetle (Coleoptera: Dermestidae). J. Econ. Entom. 82, 1470–1477 (1989).
Google Scholar
Gerken, A. R. & Campbell, J. F. Life history changes in Trogoderma variabile and T. inclusum due to mating delay with implications for mating disruption as a management tactic. Ecol. Evol. 8, 2428–2439 (2018).
Google Scholar
Partida, G. J. & Strong, R. G. Comparative studies on the biologies of six species of Trogoderma: T variabile. Ann. Entomol. Soc. Am. 68, 115–125 (1975).
Google Scholar
Strong, R. G. Comparative studies on the biologies of six species of Trogoderma: T inclusum. Ann. Entomol. Soc. Am. 68, 91–104 (1975).
Google Scholar
Phillips, T. W., Pfannenstiel, L. & Hagstrum, D. Survey of Trogoderma species (Coleoptera: Dermestidae) associated with international trade of dried distiller’s grains and solubles in the USA. Julius Kühn Archiv. 463, 233–238 (2008).
Hadaway, A. The biology of the beetles, Trogoderma granarium Everts and Trogoderma versicolor (Creutz). Bull. Entomol. Res. 46, 781–796 (1956).
Google Scholar
Phillips, T.W., Pfannenstiel, L. & Hagstrum, D. Survey of Trogoderma species (Coleoptera: Dermestidae) associated with international trade of dried distiller’s grains and solubles in the USA. In: Adler CS, Opit G, Fürstenau B, Müller-Blenkle C, Kern P, Arthur FH et al., editors. Proceedings of the 12th International Working Conference on Stored Product Protection; Vol. 1, Quedlinburg, Julius-Kühn-Archiv, pp. 233–238 (2018).
Gorham, J.R. Insect and Mite Pests in Food: An Illustrated Key. Vol. 1 and 2. US Department of Agriculture, Agricultural Research Service (1991).
Olson, R. L. O., Farris, R. E., Barr, N. B. & Cognato, A. I. Molecular identification of Trogoderma granarium (Coleoptera: Dermestidae) using the 16S gene. J. Pest Sci. 87, 701–710 (2014).
Google Scholar
Furui, S., Miyanoshita, A., Imamura, T., Minegishi, Y. & Kokutani, R. Qualitative real-time PCR identification of the khapra beetle, Trogoderma granarium (Coleoptera: Dermestidae). Appl. Entomol. Zool. 54, 101–107 (2019).
Google Scholar
Rako, L. et al. A LAMP (loop-mediated isothermal amplification) test for rapid identification of Khapra beetle (Trogoderma granarium). Pest Manag. Sci. 77, 5509–5521 (2021).
Google Scholar
Castañé, C., Agustí, N., del Estal, P. & Riudavets, J. Survey of Trogoderma spp. in Spanish mills and warehouses. J. Stored. Prod. Res. 88, 101661 (2020).
Google Scholar
Trujillo-González, et al. Detection of khapra beetle environmental DNA using portable technologies in Australian biosecurity. Front. Insect Sci. 2, e795379 (2022).
Google Scholar
Svec, D., Tichopad, A., Novosadova, V., Pfaffl, M. W. & Kubista, M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol. Detect. Quantif. 3, 9–16 (2015).
Google Scholar
Taylor, S. C. et al. The Ultimate qPCR experiment: Producing publication quality, reproducible data the first time. Trends Biotechnol. 37, 761–774 (2019).
Google Scholar
Van Holm, W. et al. A viability quantitative PCR dilemma: Are longer amplicons better?. Appl. Environ. Microbiol. 87, e0265320 (2021).
Google Scholar
Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system (wwwbarcodinglifeorg). Mol. Ecol. Notes 7, 355–364 (2007).
Google Scholar
Wittwer, C. T. & Kusakawa, N. Real-time PCR. In Molecular microbiology: Diagnostic principles and practice (eds Persing, D. H. et al.) 71–84 (ASM Press, 2004).
Stewart, D. et al. A needle in a haystack: A multigene TaqMan assay for the detection of Asian gypsy moths in bulk pheromone trap samples. Biol. Invasions 21, 1843–1856 (2019).
Google Scholar
Butterwort, V. et al. A DNA extraction method for insects from sticky traps: Targeting a low abundance pest, Phthorimaea absoluta (Lepidoptera: Gelechiidae), in mixed species communities. J. Econ. Entom. 115, 844–851 (2022).
Google Scholar
Carew, M. E., Coleman, R. A. & Hoffmann, A. A. Can non-destructive DNA extraction of bulk invertebrate samples be used for metabarcoding?. PeerJ 6, e4980 (2018).
Google Scholar
Domingue, M.J. et al. Outcome of direct competition between Trogoderma granarium and Trogoderma inclusum over varying commodities, temperatures, and experimental duration. In Submission to Scientific Reports.
Zieritz, A. et al. Development and evaluation of hotshot protocols for cost- and time-effective extraction of PCR-ready DNA from single freshwater mussel larvae (Bivalvia: Unionida). J. Molluscan Stud. 84, 198–201 (2018).
Google Scholar
Djoumad, A. et al. Development of a qPCR-based method for counting overwintering spruce budworm (Choristoneura fumiferana) larvae collected during fall surveys and for assessing their natural enemy load: A proof-of-concept study. Pest Manag. Sci. 78, 336–343 (2022).
Google Scholar
Chen, H., Rangasamy, M., Tan, S. Y., Wang, H. & Siegfried, B. D. Evaluation of five methods for total DNA extraction from western corn rootworm beetles. PLoS ONE 5, e11963 (2010).
Google Scholar
Beckmann, J. S. & Soller, M. Restriction fragment length polymorphisms in genetic improvement: Methodologies, mapping and costs. Theor. Appl. Genet. 67, 35–43 (1983).
Google Scholar
Arimoto, M., Satoh, M., Uesugi, R. & Osakabe, M. PCR-RFLP analysis for identification of Tetranychus spider mite species (Acari: Tetranychidae). J. Econ. Entom. 106, 661–668 (2013).
Google Scholar
Vezenegho, S. B. et al. Discrimination of 15 Amazonian anopheline mosquito species by polymerase chain reaction—Restriction fragment length polymorphism. J. Med. Entomol. 59, 1060–1064 (2022).
Google Scholar
Beal, R. S. Annotated checklist of Nearctic Dermestidae with revised key to the genera. Coleopt. Bull. 57, 391–404 (2003).
Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
Google Scholar
Liu, H. & Mottern, J. An old remedy for a new problem? Identification of Ooencyrtus kuvanae (Hymenoptera: Encyrtidae), an egg parasitoid of Lycorma delicatula (Hemiptera: Fulgoridae) in North America. J. Insect Sci. 17, 18 (2017).
Google Scholar
Simon, C. et al. Evolution, weighing, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).
Google Scholar
Dowton, M. & Austin, A. D. Evidence for AT-transversion bias in wasp (Hymenoptera: Symphyta) mitochondrial genes and its implications for the origin of parasitism. J. Mol. Evol. 44, 398–405 (1997).
Google Scholar
Untergasser, A. et al. Primer3—New capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).
Google Scholar
Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).
Google Scholar
Süss, B., Flekna, G., Wagner, M. & Hein, I. Studying the effect of single mismatches in primer and probe binding regions on amplification curves and quantification in real-time PCR. J. Microbiol. Methods 76, 316–319 (2009).
Google Scholar
Stadhouders, R. et al. The effect of primer-template mismatches on the detection and quantification of nucleic acids using the 5’ nuclease assay. J. Mol. Diagn. 12, 109–117 (2010).
Google Scholar
Stewart, D. et al. A multi-species TaqMan PCR assay for the identification of Asian gypsy moths (Lymantria spp.) and other invasive Lymantriines of biosecurity concern to North America. PLoS ONE 11, e0160878 (2016).
Google Scholar
Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 1–12 (2009).
Google Scholar
Source: Ecology - nature.com