IUCN. The IUCN red list of threatened species. Version 2022-1. https://www.iucnredlist.org. Accessed on 17 September 2022. (2022).
O’Hanlon, S., Rieux, A., Farrer, R. A. & Rosa, G. M. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018).
Google Scholar
Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).
Google Scholar
La Marca, E. et al. Catastrophic population declines and extinctions in neotropical Harlequin frogs (Bufonidae: Atelopus). Biotropica 37, 190–201 (2005).
Rovito, S. M., Parra-Olea, G., Vasquez-Almazan, C. R., Papenfuss, T. J. & Wake, D. B. Dramatic declines in neotropical salamander populations are an important part of the global amphibian crisis. Proc. Natl. Acad. Sci. U.S.A. 106, 3231–3236 (2009).
Google Scholar
Stegen, G. et al. Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature 544, 353–356 (2017).
Google Scholar
Martel, A. et al. Recent introduction of a chytrid fungus endangers western palearctic salamanders. Science 346, 630–631 (2014).
Google Scholar
Green, D. E., Converse, K. A. & Schrader, A. K. Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996–2001. Annu. NY Acad. Sci. 969, 323–339 (2002).
Google Scholar
Duffus, A. L. J. & Cunningham, A. A. Major disease threats to European amphibians. Herpetol. J. 20, 117–127 (2010).
Teacher, A. G. F., Cunningham, A. A. & Garner, T. W. J. Assessing the long-term impact of Ranavirus infection in wild common frog populations. Anim. Conserv. 13, 514–522 (2010).
Chinchar, V. G. & Waltzek, T. B. Ranaviruses: Not just for frogs. PLoS Pathog. 10, e1003850 (2014).
Nickerson, M. A. & Mays, C. E. The hellbenders: North American giant salamanders. Milwaukee Public Mus. Publ. Biol. Geol. 1, 1–106 (1973).
Wheeler, B. A., Prosen, E., Mathis, A. & Wilkinson, R. F. Population declines of a long- lived salamander: A 20+ year study of hellbenders, Cryptobranchus alleganiensis. Biol. Conserv. 109, 151–156 (2003).
Freake, M. J. & DePerno, C. S. Importance of demographic surveys and public lands for the conservation of eastern hellbenders Cryptobranchus alleganiensis alleganiensis in southeast USA. PLoS ONE 12, e0179153 (2017).
USFWS. Endangered and threatened wildlife and plants; Endangered status for the Ozark Hellbender salamander. 50 CFR Part 23. Fed. Reg. 76, 61956–61978 (2011).
USFWS. Species status assessment report for the Eastern Hellbender (Cryptobranchus alleganiensis alleganiensis). p 104 (2018).
Pugh, M., Hutchins, M., Madritch, M., Siefferman, L. & Gangloff, M. M. Land-use and local physical and chemical habitat parameters predict site occupancy by hellbender salamanders. Hydrobiologia 770, 105–116 (2015).
Bodinof-Jachowski, C. M. & Hopkins, W. A. Loss of catchment-wide riparian forest cover is associated with reduced recruitment in a long-lived amphibian. Biol. Cons. 202, 215–227 (2018).
Bodinof, C. M., Briggler, J. T. & Duncan, M. C. Historic occurrence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in hellbender Cryptobranchus alleganiensis populations from Missouri. Dis. Aquat. Org. 96, 1–7 (2011).
Hardman, R. H. et al. Geographic and individual determinants of important amphibian pathogens in hellbenders (Cryptobranchus alleganiensis) in Tennessee and Arkansas, USA. J. Wildl. Dis. 56, 803–814 (2020).
Google Scholar
Bales, E. K. et al. Pathogenic chytrid fungus Batrachochytrium dendrobatidis, but not B. salamandrivorans, detected on eastern hellbenders. PLoS ONE 10, e0116405 (2015).
Souza, M. J., Gray, M. J., Colclough, P. & Miller, D. L. Prevalence of infection by Batrachochytrium dendrobatidis and ranavirus in eastern hellbenders (Cryptobranchus alleganiensis alleganiensis) in eastern Tennessee. J. Wildl. Dis. 48, 560–566 (2012).
Gonynor, J. L., Yabsley, M. J. & Jensen, J. B. A preliminary survey of Batrachochytrium dendrobatidis exposure in hellbenders from a stream in Georgia, USA. Herpetol. Rev. 42, 58–59 (2011).
Briggler, J. T., Larson, K. A. & Irwin, K. J. Presence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis) on hellbenders (Cryptobranchus alleganiensis) in the Ozark highlands. Herpetol. Rev. 39, 443–444 (2008).
Dusick, A., Flatland, B., Craig, L. & Ferguson, S. What is your diagnosis? Skin scraping from a hellbender. Vet. Clin. Pathol. 46, 183–184 (2017).
Dean, N., Ossiboff, R., Bunting, E., Schuler, K., Rothrock, A., & Roblee, K. The eastern hellbender and Batrachochytrium dendrobatidis (Bd) in western New York. In Proceedings of the 65th International Conference of the Wildlife Disease Association p. 151 (2016).
Cusaac, J. P. et al. Emerging pathogens and a current-use pesticide: potential impacts on eastern hellbenders. J. Aquat. Anim. Health 33, 24–32 (2021).
Google Scholar
Geng, Y. et al. First report of a ranavirus associated with morbidity and mortality in farmed Chinese giant salamanders (Andrias davidianus). J. Comp. Pathol. 145, 96–102 (2011).
Hardman, R. H., Irwin, K. J., Sutton, W. B. & Miller, D. L. Evaluation of severity and factors contributing to foot lesions in endangered Ozark Hellbenders, Cryptobranchus alleganiensis bishopi. Front. Vet. Sci. 7, 1–10 (2020).
Hernández-Gómez, O., Kimble, S. J. A., Briggler, J. T. & Williams, R. T. Characterization of the cutaneous bacterial communities of two giant salamander subspecies. Microb. Ecol. 73, 445–454 (2017).
Miller, B. T. & Miller, J. L. Prevalence of physical abnormalities in eastern hellbender (Cryptobranchus alleganiensis alleganiensis) populations of middle Tennessee. Southeast. Nat. 4, 513–520 (2005).
Shoemaker, V. H. & Nagy, K. Osmoregulation in amphibians and reptiles. Annu. Rev. Physiol. 39, 449–471 (1977).
Google Scholar
Guimond, R. W. & Hutchison, V. H. Aquatic respiration: An unusual strategy in the hellbender Cryptobranchus alleganiensis alleganiensis (Daudin). Science 182, 1263–1265 (1973).
Google Scholar
Rollins-Smith, L. A. & Conlon, J. M. Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev. Comp. Immunol. 29, 589–598 (2005).
Google Scholar
Brogden, K. A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria. Nat. Rev. Microbiol. 3, 238–250 (2005).
Google Scholar
Xu, X. & Lai, R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem. Rev. 115, 1760–1846 (2015).
Google Scholar
Woodhams, D. C. et al. Population trends associated with antimicrobial peptide defenses against chytridiomycosis in Australian frogs. Oecologica 146, 531–540 (2006).
Google Scholar
Rollins-Smith, L. A. et al. Antimicrobial peptide defenses of the mountain yellow-legged frog (Rana muscosa). Dev. Comp. Immunol. 30, 831–842 (2006).
Google Scholar
Van Rooij, P., Martel, A., Haesebrouck, F. & Pasmans, F. Amphibian chytridiomycosis: A review with focus on fungus-host interactions. Vet. Res. 46, 137 (2015).
Demori, I. et al. Peptides for skin protection and healing in amphibians. Molecules 24, 347 (2019).
Wu, J. et al. A frog cathelicidin peptide effectively promotes cutaneous wound healing in mice. Biochem. J. 475, 2785–2799 (2018).
Google Scholar
Tennessen, J. A. et al. Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Dev. Comp. Immunol. 33, 1247–1257 (2009).
Google Scholar
Tatiersky, L. et al. Effect of glucocorticoids on expression of cutaneous antimicrobial peptides in northern leopard frogs (Lithobates pipiens). BMC Vet. Res. 11, 191 (2015).
Pereira, K. E. & Woodley, S. K. Skin defenses of North American salamanders against a deadly salamander fungus. Anim. Conserv. 24, 552–567 (2021).
Pereira, K. E. et al. Skin glands of an aquatic salamander vary in size and distribution and release antimicrobial secretions effective against chytrid fungal pathogens. J. Exp. Biol. 221, jeb183707 (2018).
Smith, H. K. et al. Skin mucosome activity as an indicator of Batrachochytrium salamandrivorans susceptibility in salamanders. PLoS ONE 13, e0199295 (2018).
Meng, P. et al. The first salamander defensin antimicrobial peptide. PLoS ONE 8, e83044 (2013).
Google Scholar
Sheafor, B., Davidson, E. W., Parr, L. & Rollins-Smith, L. A. Antimicrobial peptide defenses in the salamander, Ambystoma tigrinum, against emerging amphibian pathogens. J. Wildl. Dis. 44, 226–236 (2008).
Google Scholar
Fredericks, L. P. & Dankert, J. R. Antibacterial and hemolytic activity of the skin of the terrestrial salamander, Plethodon cinereus. J. Exp. Zool. 287, 340–345 (2000).
Google Scholar
Pei, J. & Jiang, L. Antimicrobial peptide from mucus of Andrias davidianus: Screening and purification by magnetic cell membrane separation technique. Int. J. Antimicrob. Agents 50, 41–46 (2017).
Google Scholar
Woodhams, D. C. et al. Adaptations of skin peptide defences and possible response to the amphibian chytrid fungus in populations of Australian green-eyed treefrogs, Litoria genimaculata. Div. Distrib. 16, 703–712 (2010).
Hernández-Gómez, O., Briggler, J. T. & Williams, R. N. Influence of immunogenetics, sex and body condition on the cutaneous microbial communities of two giant salamanders. Mol. Ecol. 27, 1915–1929 (2018).
Niyonsaba, F., Kiatsurayanon, C., Chieosilapatham, P. & Ogawa, H. Friends or foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp. Dermatol. 26, 989–998 (2017).
Google Scholar
Rollins-Smith, L. A., Ramsey, J. P., Pask, J. D., Reinert, L. K. & Woodhams, D. C. Amphibian immune defenses against chytridiomycosis: Impacts of changing environments. Integr. Comp. Biol. 51, 552–562 (2011).
Google Scholar
Chinchar, V. G. et al. Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology 323, 268–275 (2004).
Google Scholar
Woodhams, D. C. et al. Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS ONE 9, e96375 (2014).
Google Scholar
Becker, M. H., Brucker, R. M., Schwantes, C. R., Harris, R. N. & Minbiole, K. P. The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Appl. Environ. Microbiol. 75, 6635–6638 (2009).
Google Scholar
Bell, S. C., Garland, S. & Alford, R. A. Increased numbers of culturable inhibitory bacterial taxa may mitigate the effects of Batrachochytrium dendrobatidis in Australian wet tropics frogs. Front. Microbiol. 9, 1604 (2018).
Zhang, L. & Gallo, R. L. Antimicrobial peptides. Curr. Biol. 26, R14–R19 (2016).
Google Scholar
Rollins-Smith, L. A. et al. Antimicrobial peptide defenses of the Tarahumara frog, Rana tarahumarae. Biochem. Biophys. Res. Commun. 297, 361–367 (2002).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/ (2013).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Hime, P. M. et al. Genomic data reveal conserved female heterogamety in giant salamanders with gigantic nuclear genomes. G3 Genes Genomes Genet. 9, 3467–3476 (2019).
Google Scholar
Mazerolle, M. J. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.2–1. https://cran.r-project.org/package=AICcmodavg (2019).
Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretic Approach 2nd edn, 454 (Springer, 2002).
Google Scholar
Holden, W. M., Reinert, L. K., Hanlon, S. M., Parris, M. J. & Rollins-Smith, L. A. Development of antimicrobial peptide defenses of southern leopard frogs, Rana sphenocephala, against the pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Dev. Comp. Immunol. 48, 65–75 (2015).
Google Scholar
De Caceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3 (2009).
Source: Ecology - nature.com