in

Diverse flower-visiting responses among pollinators to multiple weather variables in buckwheat pollination

  • Mooney, H. et al. Biodiversity, climate change, and ecosystem services. Curr. Opin. Environ. Sustain. 1, 46–54 (2009).

    Article 

    Google Scholar 

  • Perrings, C., Duraiappah, A., Larigauderie, A. & Mooney, H. The biodiversity and ecosystem services science-policy interface. Science 331, 1139–1140 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 96, 1463–1468 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).

    Article 

    Google Scholar 

  • Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).

    Article 

    Google Scholar 

  • Blüthgen, N. & Klein, A.-M. Functional complementarity and specialisation: The role of biodiversity in plant–pollinator interactions. Basic Appl. Ecol. 12, 282–291 (2011).

    Article 

    Google Scholar 

  • Brittain, C., Kremen, C. & Klein, A. M. Biodiversity buffers pollination from changes in environmental conditions. Glob. Change Biol. 19, 540–547 (2013).

    Article 
    ADS 

    Google Scholar 

  • Rader, R., Reilly, J., Bartomeus, I. & Winfree, R. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Glob. Chang. Biol. 19, 3103–3110 (2013).

    Article 
    ADS 

    Google Scholar 

  • Rogers, S. R., Tarpy, D. R. & Burrack, H. J. Bee species diversity enhances productivity and stability in a perennial crop. PLoS ONE 9, e97307 (2014).

    Article 
    ADS 

    Google Scholar 

  • Kühsel, S. & Blüthgen, N. High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands. Nat. Commun. 6, 1–10 (2015).

    Article 

    Google Scholar 

  • Knop, E. et al. Rush hours in flower visitors over a day-night cycle. Insect Conserv. Divers. 11, 267–275 (2018).

    Article 

    Google Scholar 

  • Goodwin, E. K., Rader, R., Encinas-Viso, F. & Saunders, M. E. Weather conditions affect the visitation frequency, richness and detectability of insect flower visitors in the Australian Alpine zone. Environ. Entomol. 50, 348–358 (2021).

    Article 

    Google Scholar 

  • Feit, B. et al. Landscape complexity promotes resilience of biological pest control to climate change. Proc. Biol. Sci. 288, 20210547 (2021).

    Google Scholar 

  • Tomas, F., Martínez-Crego, B., Hernán, G. & Santos, R. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. Glob. Chang. Biol. 21, 4021–4030 (2015).

    Article 
    ADS 

    Google Scholar 

  • Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).

    Article 

    Google Scholar 

  • Cariveau, D. P., Williams, N. M., Benjamin, F. E. & Winfree, R. Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators. Ecol. Lett. 16, 903–911 (2013).

    Article 

    Google Scholar 

  • Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608. https://doi.org/10.1126/science.1230200 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).

    Article 

    Google Scholar 

  • Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. 113, 146–151 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).

    Article 

    Google Scholar 

  • Smith, M. R., Singh, G. M., Mozaffarian, D. & Myers, S. S. Effects of decreases of animal pollinators on human nutrition and global health: A modelling analysis. Lancet 386, 1964–1972 (2015).

    Article 

    Google Scholar 

  • González-Varo, J. P. et al. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol. Evol. 28, 524–530 (2013).

    Article 

    Google Scholar 

  • Marshall, L. et al. The interplay of climate and land use change affects the distribution of EU bumblebees. Glob. Change Biol. 24, 101–116 (2018).

    Article 
    ADS 

    Google Scholar 

  • Millard, J. et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 1–11 (2021).

    Article 
    ADS 

    Google Scholar 

  • Vasiliev, D. & Greenwood, S. The role of climate change in pollinator decline across the Northern Hemisphere is underestimated. Sci. Total Environ. 775, 145788 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Steffan-Dewenter, I., Münzenberg, U., Bürger, C., Thies, C. & Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432 (2002).

    Article 

    Google Scholar 

  • Hass, A. L. et al. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2017.2242 (2018).

    Article 

    Google Scholar 

  • Winfree, R. & Kremen, C. Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc. R. Soc. B Biol. Sci. 276, 229–237 (2009).

    Article 

    Google Scholar 

  • Jauker, F., Diekoetter, T., Schwarzbach, F. & Wolters, V. Pollinator dispersal in an agricultural matrix: Opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc. Ecol. 24, 547–555 (2009).

    Article 

    Google Scholar 

  • Weiner, C. N., Werner, M., Linsenmair, K. E. & Blüthgen, N. Land-use impacts on plant–pollinator networks: Interaction strength and specialization predict pollinator declines. Ecology 95, 466–474 (2014).

    Article 

    Google Scholar 

  • Chain-Guadarrama, A., Martínez-Salinas, A., Aristizábal, N. & Ricketts, T. H. Ecosystem services by birds and bees to coffee in a changing climate: A review of coffee berry borer control and pollination. Agric. Ecosyst. Environ. 280, 53–67 (2019).

    Article 

    Google Scholar 

  • Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L. & Totland, Ø. How does climate warming affect plant–pollinator interactions?. Ecol. Lett. 12, 184–195 (2009).

    Article 

    Google Scholar 

  • Bartomeus, I. et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2, e328 (2014).

    Article 

    Google Scholar 

  • Albrecht, M., Schmid, B., Hautier, Y. & Müller, C. B. Diverse pollinator communities enhance plant reproductive success. Proc. R. Soc. B Biol. Sci. 279, 4845–4852 (2012).

    Article 

    Google Scholar 

  • Ellis, C. R., Feltham, H., Park, K., Hanley, N. & Goulson, D. Seasonal complementary in pollinators of soft-fruit crops. Basic Appl. Ecol. 19, 45–55 (2017).

    Article 

    Google Scholar 

  • Brittain, C., Williams, N., Kremen, C. & Klein, A.-M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B Biol. Sci. 280, 20122767 (2013).

    Article 

    Google Scholar 

  • Miñarro, M. & Twizell, K. W. Pollination services provided by wild insects to kiwifruit (Actinidia deliciosa). Apidologie 46, 276–285 (2015).

    Article 

    Google Scholar 

  • Senapathi, D., Goddard, M. A., Kunin, W. E. & Baldock, K. C. Landscape impacts on pollinator communities in temperate systems: Evidence and knowledge gaps. Funct. Ecol. 31, 26–37 (2017).

    Article 

    Google Scholar 

  • Papanikolaou, A. D., Kuehn, I., Frenzel, M. & Schweiger, O. Landscape heterogeneity enhances stability of wild bee abundance under highly varying temperature, but not under highly varying precipitation. Landsc. Ecol. 32, 581–593 (2017).

    Article 

    Google Scholar 

  • Papanikolaou, A. D., Kühn, I., Frenzel, M. & Schweiger, O. Semi-natural habitats mitigate the effects of temperature rise on wild bees. J. Appl. Ecol. 54, 527–536 (2017).

    Article 

    Google Scholar 

  • Orford, K. A., Vaughan, I. P. & Memmott, J. The forgotten flies: The importance of non-syrphid Diptera as pollinators. Proc. R. Soc. B Biol. Sci. 282, 20142934 (2015).

    Article 

    Google Scholar 

  • Settele, J., Bishop, J. & Potts, S. G. Climate change impacts on pollination. Nat. Plants 2, 1–3 (2016).

    Article 

    Google Scholar 

  • Taki, H., Okabe, K., Makino, S. I., Yamaura, Y. & Sueyoshi, M. Contribution of small insects to pollination of common buckwheat, a distylous crop. Ann. Appl. Biol. 155, 121–129 (2009).

    Article 

    Google Scholar 

  • Krkošková, B. & Mrazova, Z. Prophylactic components of buckwheat. Food Res. Int. 38, 561–568 (2005).

    Article 

    Google Scholar 

  • Campbell, J. W., Irvin, A., Irvin, H., Stanley-Stahr, C. & Ellis, J. D. Insect visitors to flowering buckwheat, Fagopyrum esculentum (Polygonales: Polygonaceae), in north-central Florida. Fla. Entomol. 99, 264–268 (2016).

    Article 

    Google Scholar 

  • Hadley, N. F. Water Relations of Terrestrial Arthropods (CUP Archive, 1994).

    Google Scholar 

  • Sgolastra, F. et al. Temporal activity patterns in a flower visitor community of Dictamnus albus in relation to some biotic and abiotic factors. Bull. Insectol. 69, 291–300 (2016).

    Google Scholar 

  • Vicens, N. & Bosch, J. Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environ. Entomol. 29, 413–420 (2000).

    Article 

    Google Scholar 

  • Carlucci, M. B., Brancalion, P. H., Rodrigues, R. R., Loyola, R. & Cianciaruso, M. V. Functional traits and ecosystem services in ecological restoration. Restor. Ecol. 28, 1372–1383 (2020).

    Article 

    Google Scholar 

  • Lavorel, S. Plant functional effects on ecosystem services. (2013).

  • Defra. (ed Food and Rural Affairs Department for Environment) (2019).

  • Agency, J. M. Amedas, https://tenki.jp/past/2019/09/amedas/ (2019).

  • Jacquemart, A.-L., Gillet, C. & Cawoy, V. Floral visitors and the importance of honey bee on buckwheat (Fagopyrum esculentum Moench) in central Belgium. J. Hortic. Sci. Biotechnol. 82, 104–108 (2007).

    Article 

    Google Scholar 

  • Taki, H. et al. Effects of landscape metrics on Apis and non-Apis pollinators and seed set in common buckwheat. Basic Appl. Ecol. 11, 594–602 (2010).

    Article 

    Google Scholar 

  • Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).

    Article 

    Google Scholar 

  • Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).

    MATH 

    Google Scholar 

  • Dray S, et al. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-20, https://CRAN.R-project.org/package=adespatial. (2022).

  • Benjamin, F. E., Reilly, J. R. & Winfree, R. Pollinator body size mediates the scale at which land use drives crop pollination services. J. Appl. Ecol. 51, 440–449 (2014).

    Article 

    Google Scholar 

  • Földesi, R. et al. Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agric. For. Entomol. 18, 68–75 (2016).

    Article 

    Google Scholar 

  • Oksanen J, et al. vegan: Community Ecology Package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan. (2022)

  • Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article 

    Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis (Chapman and Hall/CRC, 1995).

    Book 
    MATH 

    Google Scholar 

  • Team, R. C. R: A Language and Environment for Statistical Computing (2019).

  • Sasaki, H. & Wagatsuma, T. Bumblebees (Apidae: Hymenoptera) are the main pollinators of common buckwheat, Fogopyrum esculentum, in Hokkaido, Japan. Appl. Entomol. Zool. 42, 659–661 (2007).

    Article 

    Google Scholar 

  • Nagano, Y., Miyashita, T., Taki, H. & Yokoi, T. Diversity of co-flowering plants at field margins potentially sustains an abundance of insects visiting buckwheat, Fagopyrum esculentum, in an agricultural landscape. Ecol. Res. 36, 882–891 (2021).

    Article 

    Google Scholar 

  • Samra, S., Samocha, Y., Eisikowitch, D. & Vaknin, Y. Can ants equal honeybees as effective pollinators of the energy crop Jatropha curcas L. under Mediterranean conditions?. Gcb Bioenergy 6, 756–767 (2014).

    Article 

    Google Scholar 

  • Sugiura, N., Miyazaki, S. & Nagaishi, S. A supplementary contribution of ants in the pollination of an orchid, Epipactis thunbergii, usually pollinated by hover flies. Plant Syst. Evol. 258, 17–26 (2006).

    Article 

    Google Scholar 

  • Natsume, K., Hayashi, S. & Miyashita, T. Ants are effective pollinators of common buckwheat Fagopyrum esculentum. Agric. For. Entomol. 24, 446–452 (2022).

    Article 

    Google Scholar 

  • Carvalheiro, L. G., Seymour, C. L., Nicolson, S. W. & Veldtman, R. Creating patches of native flowers facilitates crop pollination in large agricultural fields: Mango as a case study. J. Appl. Ecol. 49, 1373–1383 (2012).

    Article 

    Google Scholar 

  • Michiyama, H., Arikuni, M. & Hirano, T. Effect of air temperature on the growth, flowering and ripening in common buckwheat. In The Procceeding of the 8th ISB (2001)

  • Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199-U196. https://doi.org/10.1038/nature10282 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McCain, C. M. & Colwell, R. K. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 14, 1236–1245 (2011).

    Article 

    Google Scholar 

  • Choi, S.-W. Effects of weather factors on the abundance and diversity of moths in a temperate deciduous mixed forest of Korea. Zool. Sci. 25, 53–58 (2008).

    Article 

    Google Scholar 

  • Feldmeier, S. et al. Climate versus weather extremes: Temporal predictor resolution matters for future rather than current regional species distribution models. Divers. Distrib. 24, 1047–1060 (2018).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Study: Carbon-neutral pavements are possible by 2050, but rapid policy and industry action are needed

    Brown bear skin-borne secretions display evidence of individuality and age-sex variation