in

Diverse flower-visiting responses among pollinators to multiple weather variables in buckwheat pollination

  • Mooney, H. et al. Biodiversity, climate change, and ecosystem services. Curr. Opin. Environ. Sustain. 1, 46–54 (2009).

    Article 

    Google Scholar 

  • Perrings, C., Duraiappah, A., Larigauderie, A. & Mooney, H. The biodiversity and ecosystem services science-policy interface. Science 331, 1139–1140 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 96, 1463–1468 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).

    Article 

    Google Scholar 

  • Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).

    Article 

    Google Scholar 

  • Blüthgen, N. & Klein, A.-M. Functional complementarity and specialisation: The role of biodiversity in plant–pollinator interactions. Basic Appl. Ecol. 12, 282–291 (2011).

    Article 

    Google Scholar 

  • Brittain, C., Kremen, C. & Klein, A. M. Biodiversity buffers pollination from changes in environmental conditions. Glob. Change Biol. 19, 540–547 (2013).

    Article 
    ADS 

    Google Scholar 

  • Rader, R., Reilly, J., Bartomeus, I. & Winfree, R. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Glob. Chang. Biol. 19, 3103–3110 (2013).

    Article 
    ADS 

    Google Scholar 

  • Rogers, S. R., Tarpy, D. R. & Burrack, H. J. Bee species diversity enhances productivity and stability in a perennial crop. PLoS ONE 9, e97307 (2014).

    Article 
    ADS 

    Google Scholar 

  • Kühsel, S. & Blüthgen, N. High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands. Nat. Commun. 6, 1–10 (2015).

    Article 

    Google Scholar 

  • Knop, E. et al. Rush hours in flower visitors over a day-night cycle. Insect Conserv. Divers. 11, 267–275 (2018).

    Article 

    Google Scholar 

  • Goodwin, E. K., Rader, R., Encinas-Viso, F. & Saunders, M. E. Weather conditions affect the visitation frequency, richness and detectability of insect flower visitors in the Australian Alpine zone. Environ. Entomol. 50, 348–358 (2021).

    Article 

    Google Scholar 

  • Feit, B. et al. Landscape complexity promotes resilience of biological pest control to climate change. Proc. Biol. Sci. 288, 20210547 (2021).

    Google Scholar 

  • Tomas, F., Martínez-Crego, B., Hernán, G. & Santos, R. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. Glob. Chang. Biol. 21, 4021–4030 (2015).

    Article 
    ADS 

    Google Scholar 

  • Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).

    Article 

    Google Scholar 

  • Cariveau, D. P., Williams, N. M., Benjamin, F. E. & Winfree, R. Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators. Ecol. Lett. 16, 903–911 (2013).

    Article 

    Google Scholar 

  • Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608. https://doi.org/10.1126/science.1230200 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).

    Article 

    Google Scholar 

  • Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. 113, 146–151 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).

    Article 

    Google Scholar 

  • Smith, M. R., Singh, G. M., Mozaffarian, D. & Myers, S. S. Effects of decreases of animal pollinators on human nutrition and global health: A modelling analysis. Lancet 386, 1964–1972 (2015).

    Article 

    Google Scholar 

  • González-Varo, J. P. et al. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol. Evol. 28, 524–530 (2013).

    Article 

    Google Scholar 

  • Marshall, L. et al. The interplay of climate and land use change affects the distribution of EU bumblebees. Glob. Change Biol. 24, 101–116 (2018).

    Article 
    ADS 

    Google Scholar 

  • Millard, J. et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 1–11 (2021).

    Article 
    ADS 

    Google Scholar 

  • Vasiliev, D. & Greenwood, S. The role of climate change in pollinator decline across the Northern Hemisphere is underestimated. Sci. Total Environ. 775, 145788 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Steffan-Dewenter, I., Münzenberg, U., Bürger, C., Thies, C. & Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432 (2002).

    Article 

    Google Scholar 

  • Hass, A. L. et al. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2017.2242 (2018).

    Article 

    Google Scholar 

  • Winfree, R. & Kremen, C. Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc. R. Soc. B Biol. Sci. 276, 229–237 (2009).

    Article 

    Google Scholar 

  • Jauker, F., Diekoetter, T., Schwarzbach, F. & Wolters, V. Pollinator dispersal in an agricultural matrix: Opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc. Ecol. 24, 547–555 (2009).

    Article 

    Google Scholar 

  • Weiner, C. N., Werner, M., Linsenmair, K. E. & Blüthgen, N. Land-use impacts on plant–pollinator networks: Interaction strength and specialization predict pollinator declines. Ecology 95, 466–474 (2014).

    Article 

    Google Scholar 

  • Chain-Guadarrama, A., Martínez-Salinas, A., Aristizábal, N. & Ricketts, T. H. Ecosystem services by birds and bees to coffee in a changing climate: A review of coffee berry borer control and pollination. Agric. Ecosyst. Environ. 280, 53–67 (2019).

    Article 

    Google Scholar 

  • Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L. & Totland, Ø. How does climate warming affect plant–pollinator interactions?. Ecol. Lett. 12, 184–195 (2009).

    Article 

    Google Scholar 

  • Bartomeus, I. et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2, e328 (2014).

    Article 

    Google Scholar 

  • Albrecht, M., Schmid, B., Hautier, Y. & Müller, C. B. Diverse pollinator communities enhance plant reproductive success. Proc. R. Soc. B Biol. Sci. 279, 4845–4852 (2012).

    Article 

    Google Scholar 

  • Ellis, C. R., Feltham, H., Park, K., Hanley, N. & Goulson, D. Seasonal complementary in pollinators of soft-fruit crops. Basic Appl. Ecol. 19, 45–55 (2017).

    Article 

    Google Scholar 

  • Brittain, C., Williams, N., Kremen, C. & Klein, A.-M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B Biol. Sci. 280, 20122767 (2013).

    Article 

    Google Scholar 

  • Miñarro, M. & Twizell, K. W. Pollination services provided by wild insects to kiwifruit (Actinidia deliciosa). Apidologie 46, 276–285 (2015).

    Article 

    Google Scholar 

  • Senapathi, D., Goddard, M. A., Kunin, W. E. & Baldock, K. C. Landscape impacts on pollinator communities in temperate systems: Evidence and knowledge gaps. Funct. Ecol. 31, 26–37 (2017).

    Article 

    Google Scholar 

  • Papanikolaou, A. D., Kuehn, I., Frenzel, M. & Schweiger, O. Landscape heterogeneity enhances stability of wild bee abundance under highly varying temperature, but not under highly varying precipitation. Landsc. Ecol. 32, 581–593 (2017).

    Article 

    Google Scholar 

  • Papanikolaou, A. D., Kühn, I., Frenzel, M. & Schweiger, O. Semi-natural habitats mitigate the effects of temperature rise on wild bees. J. Appl. Ecol. 54, 527–536 (2017).

    Article 

    Google Scholar 

  • Orford, K. A., Vaughan, I. P. & Memmott, J. The forgotten flies: The importance of non-syrphid Diptera as pollinators. Proc. R. Soc. B Biol. Sci. 282, 20142934 (2015).

    Article 

    Google Scholar 

  • Settele, J., Bishop, J. & Potts, S. G. Climate change impacts on pollination. Nat. Plants 2, 1–3 (2016).

    Article 

    Google Scholar 

  • Taki, H., Okabe, K., Makino, S. I., Yamaura, Y. & Sueyoshi, M. Contribution of small insects to pollination of common buckwheat, a distylous crop. Ann. Appl. Biol. 155, 121–129 (2009).

    Article 

    Google Scholar 

  • Krkošková, B. & Mrazova, Z. Prophylactic components of buckwheat. Food Res. Int. 38, 561–568 (2005).

    Article 

    Google Scholar 

  • Campbell, J. W., Irvin, A., Irvin, H., Stanley-Stahr, C. & Ellis, J. D. Insect visitors to flowering buckwheat, Fagopyrum esculentum (Polygonales: Polygonaceae), in north-central Florida. Fla. Entomol. 99, 264–268 (2016).

    Article 

    Google Scholar 

  • Hadley, N. F. Water Relations of Terrestrial Arthropods (CUP Archive, 1994).

    Google Scholar 

  • Sgolastra, F. et al. Temporal activity patterns in a flower visitor community of Dictamnus albus in relation to some biotic and abiotic factors. Bull. Insectol. 69, 291–300 (2016).

    Google Scholar 

  • Vicens, N. & Bosch, J. Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environ. Entomol. 29, 413–420 (2000).

    Article 

    Google Scholar 

  • Carlucci, M. B., Brancalion, P. H., Rodrigues, R. R., Loyola, R. & Cianciaruso, M. V. Functional traits and ecosystem services in ecological restoration. Restor. Ecol. 28, 1372–1383 (2020).

    Article 

    Google Scholar 

  • Lavorel, S. Plant functional effects on ecosystem services. (2013).

  • Defra. (ed Food and Rural Affairs Department for Environment) (2019).

  • Agency, J. M. Amedas, https://tenki.jp/past/2019/09/amedas/ (2019).

  • Jacquemart, A.-L., Gillet, C. & Cawoy, V. Floral visitors and the importance of honey bee on buckwheat (Fagopyrum esculentum Moench) in central Belgium. J. Hortic. Sci. Biotechnol. 82, 104–108 (2007).

    Article 

    Google Scholar 

  • Taki, H. et al. Effects of landscape metrics on Apis and non-Apis pollinators and seed set in common buckwheat. Basic Appl. Ecol. 11, 594–602 (2010).

    Article 

    Google Scholar 

  • Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).

    Article 

    Google Scholar 

  • Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).

    MATH 

    Google Scholar 

  • Dray S, et al. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-20, https://CRAN.R-project.org/package=adespatial. (2022).

  • Benjamin, F. E., Reilly, J. R. & Winfree, R. Pollinator body size mediates the scale at which land use drives crop pollination services. J. Appl. Ecol. 51, 440–449 (2014).

    Article 

    Google Scholar 

  • Földesi, R. et al. Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agric. For. Entomol. 18, 68–75 (2016).

    Article 

    Google Scholar 

  • Oksanen J, et al. vegan: Community Ecology Package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan. (2022)

  • Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article 

    Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis (Chapman and Hall/CRC, 1995).

    Book 
    MATH 

    Google Scholar 

  • Team, R. C. R: A Language and Environment for Statistical Computing (2019).

  • Sasaki, H. & Wagatsuma, T. Bumblebees (Apidae: Hymenoptera) are the main pollinators of common buckwheat, Fogopyrum esculentum, in Hokkaido, Japan. Appl. Entomol. Zool. 42, 659–661 (2007).

    Article 

    Google Scholar 

  • Nagano, Y., Miyashita, T., Taki, H. & Yokoi, T. Diversity of co-flowering plants at field margins potentially sustains an abundance of insects visiting buckwheat, Fagopyrum esculentum, in an agricultural landscape. Ecol. Res. 36, 882–891 (2021).

    Article 

    Google Scholar 

  • Samra, S., Samocha, Y., Eisikowitch, D. & Vaknin, Y. Can ants equal honeybees as effective pollinators of the energy crop Jatropha curcas L. under Mediterranean conditions?. Gcb Bioenergy 6, 756–767 (2014).

    Article 

    Google Scholar 

  • Sugiura, N., Miyazaki, S. & Nagaishi, S. A supplementary contribution of ants in the pollination of an orchid, Epipactis thunbergii, usually pollinated by hover flies. Plant Syst. Evol. 258, 17–26 (2006).

    Article 

    Google Scholar 

  • Natsume, K., Hayashi, S. & Miyashita, T. Ants are effective pollinators of common buckwheat Fagopyrum esculentum. Agric. For. Entomol. 24, 446–452 (2022).

    Article 

    Google Scholar 

  • Carvalheiro, L. G., Seymour, C. L., Nicolson, S. W. & Veldtman, R. Creating patches of native flowers facilitates crop pollination in large agricultural fields: Mango as a case study. J. Appl. Ecol. 49, 1373–1383 (2012).

    Article 

    Google Scholar 

  • Michiyama, H., Arikuni, M. & Hirano, T. Effect of air temperature on the growth, flowering and ripening in common buckwheat. In The Procceeding of the 8th ISB (2001)

  • Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199-U196. https://doi.org/10.1038/nature10282 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McCain, C. M. & Colwell, R. K. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 14, 1236–1245 (2011).

    Article 

    Google Scholar 

  • Choi, S.-W. Effects of weather factors on the abundance and diversity of moths in a temperate deciduous mixed forest of Korea. Zool. Sci. 25, 53–58 (2008).

    Article 

    Google Scholar 

  • Feldmeier, S. et al. Climate versus weather extremes: Temporal predictor resolution matters for future rather than current regional species distribution models. Divers. Distrib. 24, 1047–1060 (2018).

    Article 

    Google Scholar 

  • Ostreopsis Schmidt and Coolia Meunier (Dinophyceae, Gonyaulacales) from Cook Islands and Niue (South Pacific Ocean), including description of Ostreopsis tairoto sp. nov.

    Pathways of degradation in rangelands in Northern Tanzania show their loss of resistance, but potential for recovery