in

Ecological traits interact with landscape context to determine bees’ pesticide risk

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • IPBES: Summary for Policymakers. In The Assessment Report on Pollinators, Pollination and Food Production (eds Potts, S. G. et al.) (IPBES, 2016).

  • Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sgolastra, F. et al. Synergistic mortality between a neonicotinoid insecticide and an ergosterol-biosynthesis-inhibiting fungicide in three bee species. Pest Manag Sci. 73, 1236–1243 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Whitehorn, P. R., O’Connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351–352 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Woodcock, B. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459 (2016).

  • Stuligross, C. & Williams, N. Past insecticide exposure reduces bee reproduction and population growth rate. Proc. Natl Acad. Sci. USA 118, e2109909118 (2021).

  • Stanley, D. A. et al. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528, 548–550 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tamburini, G. et al. Fungicide and insecticide exposure adversely impacts bumblebees and pollination services under semi-field conditions. Environ. Int. 157, 106813 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sponsler, D. B. et al. Pesticides and pollinators: a socioecological synthesis. Sci. Total Environ. 662, 1012–1027 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meehan, T. D., Werling, B. P., Landis, D. A. & Gratton, C. Agricultural landscape simplification and insecticide use in the Midwestern United States. Proc. Natl Acad. Sci. USA 108, 11500–11505 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicholson, C. C. & Williams, N. M. Cropland heterogeneity drives frequency and intensity of pesticide use. Environ. Res. 16, 074008 (2021).

    CAS 

    Google Scholar 

  • Böhme, F., Bischoff, G., Zebitz, C. P. W., Rosenkranz, P. & Wallner, K. Pesticide residue survey of pollen loads collected by honeybees (Apis mellifera) in daily intervals at three agricultural sites in South Germany. PLoS ONE 13, e0199995 (2018).

  • Larsen, A. E. & Noack, F. Impact of local and landscape complexity on the stability of field-level pest control. Nat. Sustain. 4, 120–128 (2021).

    Article 

    Google Scholar 

  • Botías, C. et al. Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ. Sci. Technol. 49, 12731–12740 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Krupke, C. H., Holland, J. D., Long, E. Y. & Eitzer, B. D. Planting of neonicotinoid-treated maize poses risks for honey bees and other non-target organisms over a wide area without consistent crop yield benefit. J. Appl. Ecol. 54, 1449–1458 (2017).

    Article 
    CAS 

    Google Scholar 

  • Wintermantel, D. et al. Neonicotinoid-induced mortality risk for bees foraging on oilseed rape nectar persists despite EU moratorium. Sci. Total Environ. 704, 135400 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krupke, C. H., Hunt, G. J., Eitzer, B. D., Andino, G. & Given, K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 7, e29268 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Long, E. Y. & Krupke, C. H. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat. Commun. 7, 11629 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • David, A. et al. Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environ. Int. 88, 169–178 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heinrich, B. The foraging specializations of individual bumblebees. Ecol. Monogr. 46, 105–128 (1976).

    Article 

    Google Scholar 

  • Bolin, A., Smith, H. G., Lonsdorf, E. V. & Olsson, O. Scale-dependent foraging tradeoff allows competitive coexistence. Oikos 127, 1575–1585 (2018).

    Article 

    Google Scholar 

  • Cresswell, J. E., Osborne, J. L. & Goulson, D. An economic model of the limits to foraging range in central place foragers with numerical solutions for bumblebees. Ecol. Entomol. 25, 249–255 (2000).

    Article 

    Google Scholar 

  • Rundlöf, M. et al. Flower plantings support wild bee reproduction and may also mitigate pesticide exposure effects. J. Appl. Ecol. 59, 2117–2127 (2022).

    Article 

    Google Scholar 

  • Graham, K. K. et al. Identities, concentrations, and sources of pesticide exposure in pollen collected by managed bees during blueberry pollination. Sci. Rep. 11, 16857 (2021).

  • Centrella, M. et al. Diet diversity and pesticide risk mediate the negative effects of land use change on solitary bee offspring production. J. Appl. Ecol. 57, 1031–1042 (2020).

    Article 
    CAS 

    Google Scholar 

  • De Palma, A. et al. Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes. J. Appl. Ecol. 52, 1567–1577 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sponsler, D. B. & Johnson, R. M. Mechanistic modeling of pesticide exposure: the missing keystone of honey bee toxicology. Environ. Toxicol. Chem. 36, 871–881 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Holzschuh, A., Dormann, C. F., Tscharntke, T. & Steffan-Dewenter, I. Mass-flowering crops enhance wild bee abundance. Oecologia 172, 477–484 (2013).

    Article 
    PubMed 

    Google Scholar 

  • McArt, S. H., Fersch, A. A., Milano, N. J., Truitt, L. L. & Böröczky, K. High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop. Sci. Rep. 7, 46554 (2017).

  • Sanchez-Bayo, F. & Goka, K. Pesticide residues and bees—a risk assessment. PLoS ONE 9, e94482 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zioga, E., Kelly, R., White, B. & Stout, J. C. Plant protection product residues in plant pollen and nectar: a review of current knowledge. Environ. Res. 189, 109873 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • The European Green Deal (European Commission, 2019).

  • More, S. J., Auteri, D., Rortais, A. & Pagani, S. EFSA is working to protect bees and shape the future of environmental risk assessment. EFSA J. 19, e190101 (2021).

  • Schmolke, A. et al. Assessment of the vulnerability to pesticide exposures across bee species. Environ. Toxicol. Chem. 40, 2640–2651 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rollin, O. et al. Differences of floral resource use between honey bees and wild bees in an intensive farming system. Agric. Ecosyst. Environ. 179, 78–86 (2013).

    Article 

    Google Scholar 

  • Persson, A. S. & Smith, H. G. Seasonal persistence of bumblebee populations is affected by landscape context. Agric. Ecosyst. Environ. 165, 201–209 (2013).

    Article 

    Google Scholar 

  • Samuelson, A. E., Schürch, R. & Leadbeater, E. Dancing bees evaluate central urban forage resources as superior to agricultural land. J. Appl. Ecol. 59, 79–88 (2022).

    Article 

    Google Scholar 

  • Milner, A. M. & Boyd, I. L. Toward pesticidovigilance. Science 357, 1232–1234 https://doi.org/10.1126/science.aan2683 (2017).

  • Nowell, L. H., Norman, J. E., Moran, P. W., Martin, J. D. & Stone, W. W. Pesticide toxicity index—a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms. Sci. Total Environ. 476–477, 144–157 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Mullin, C. A., Frazier, M., Frazier, J. L., Ashcraft, S. & Simonds, R. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS ONE 5, 9754 (2010).

    Article 

    Google Scholar 

  • Pettis, J. S. et al. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS ONE 8, e70182 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Végh, R., Sörös, C., Majercsik, N. & Sipos, L. Determination of pesticides in bee pollen: validation of a multiresidue high-performance liquid chromatography-mass spectrometry/mass spectrometry method and testing pollen samples of selected botanical origin. J. Agric. Food Chem. 70, 1507–1515 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Park, M. G., Blitzer, E. J., Gibbs, J., Losey, J. E. & Danforth, B. N. Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc. R. Soc. B 282, 20150299 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Graham, K. K. et al. Pesticide risk to managed bees during blueberry pollination is primarily driven by off-farm exposures. Sci. Rep. 12, 7189 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yourstone, J., Karlsson, M., Klatt, B. K., Olsson, O. & Smith, H. G. Effects of crop and non-crop resources and competition: high importance of trees and oilseed rape for solitary bee reproduction. Biol. Conserv. 261, 109249 (2021).

  • Persson, A. S., Mazier, F. & Smith, H. G. When beggars are choosers—how nesting of a solitary bee is affected by temporal dynamics of pollen plants in the landscape. Ecol. Evol. 8, 5777–5791 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wood, T. J., Holland, J. M. & Goulson, D. Providing foraging resources for solitary bees on farmland: current schemes for pollinators benefit a limited suite of species. J. Appl. Ecol. 54, 323–333 (2016).

  • Garthwaite, D. et al. Collection of Pesticide Application Data in View of Performing Environmental Risk Assessments for Pesticides (EFSA, 2017).

  • de Oliveira, R. C., Nascimento Queiroz, S. C., Pinto da Luz, C. F., Silveira Porto, R. & Rath, S. Bee pollen as a bioindicator of environmental pesticide contamination. Chemosphere 163, 525–534 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Arena, M. & Sgolastra, F. A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 23, 324–334 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Douglas, M. R., Sponsler, D. B., Lonsdorf, E. V. & Grozinger, C. M. County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis mellifera) on US farmland. Sci. Rep. 10, 797 (2020).

  • Commission Implementing Regulation (EU) 2021/2081 of 26 November 2021 concerning the non-renewal of approval of the active substance indoxacarb, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending Commission Implementing Regulation (EU) No 540/2011 (EUR-Lex, 2021); http://data.europa.eu/eli/reg_impl/2021/2081/oj

  • Commission Implementing Regulation (EU) 2020/23 of 13 January 2020 concerning the non-renewal of the approval of the active substance thiacloprid, in accordance with Regulation (EC) No. 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011 (EUR-Lex, 2020); http://data.europa.eu/eli/reg_impl/2020/23/oj

  • Commission Implementing Regulation (EU) 2018/783 of 29 May 2018 amending Implementing Regulation (EU) No 540/2011 as regards the conditions of approval of the active substance imidacloprid (EUR-Lex, 2018); http://data.europa.eu/eli/reg_impl/2018/783/oj

  • Herbertsson, L., Jonsson, O., Kreuger, J., Smith, H. G. & Rundlöf, M. Scientific note: imidacloprid found in wild plants downstream permanent greenhouses in Sweden. Apidologie 52, 946–949 (2021).

    Article 

    Google Scholar 

  • Tosi, S. et al. Long-term field-realistic exposure to a next-generation pesticide, flupyradifurone, impairs honey bee behaviour and survival. Commun. Biol. 4, 805 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siviter, H. & Muth, F. Do novel insecticides pose a threat to beneficial insects?: novel insecticides harm insects. Proc. R. Soc. B 287, 20201265 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • EFSA. Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. 11, 3295 (2013).

  • Guidance for Assessing Pesticide Risks to Bees (US EPA, 2014).

  • Boyle, N. K. et al. Workshop on pesticide exposure assessment paradigm for non-apis bees: foundation and summaries. Environ. Entomol. 48, 4–11 (2019).

    Article 
    PubMed 

    Google Scholar 

  • EFSA. Analysis of the evidence to support the definition of specific protection goals for bumble bees and solitary bees. EFSA J. 19, EN-7125 (2022).

  • Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tscharntke, T., Grass, I., Wanger, T. C. & Westphal, C. Restoring biodiversity needs more than reducing pesticides. Trends Ecol. Evol. 37, 115–116 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Topping, C. J. et al. Holistic environmental risk assessment for bees. Science 37, 897 (2021).

    Article 

    Google Scholar 

  • Tsvetkov, N. et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 356, 1395–1397 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jonsson, O., Fries, I. & Kreuger, J. Utveckling av Analysmetoder och Screening av Växtskyddsmedel i bin och Pollen (CKB, 2013).

  • Sawyer, R. Pollen Identification for Beekeepers (Univ. Cardiff Press, 1981).

  • IUPAC Pesticide Properties Data Base (Univ. of Hertfordshire, 2022).

  • EFSA Scientific Committee & More, S.J. et al. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J. 17, e05634 (2019).

  • Martin, O. et al. Ten years of research on synergisms and antagonisms in chemical mixtures: a systematic review and quantitative reappraisal of mixture studies. Environ. Int. 146, 106206 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • DiBartolomeis, M., Kegley, S., Mineau, P., Radford, R. & Klein, K. An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PLoS ONE 14, e0220029 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Test No. 213: Honeybees, Acute Oral Toxicity Test (OECD, 1998); https://doi.org/10.1787/9789264070165-en

  • Price, P. S. & Han, X. Maximum cumulative ratio (MCR) as a tool for assessing the value of performing a cumulative risk assessment. Int. J. Environ. Res. Public Health 8, 2212–2225 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  • Oksanen, J. et al. vegan community ecology package version 2.6-2 (2022).

  • Lenth, R. emmeans: Estimated marginal means, aka least-squares means (2022).

  • Lüdecke, D., Ben-shachar, M. S., Patil, I. & Makowski, D. performance: an R package for assessment, comparison and testing of statistical models statement of need. J. Open Source Softw. 6, 3139 (2021).

  • Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar 

  • Kendall, L. K. et al. The potential and realized foraging movements of bees are differentially determined by body size and sociality. Ecology 103, e3809 (2022).

  • Parreño, M. A. et al. Critical links between biodiversity and health in wild bee conservation. Trends Ecol. Evol. 37, 309–321 (2022).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Composition, structure and robustness of Lichen guilds

    Q&A: Tod Machover on “Overstory Overture,” his new operatic work