Anae, J. et al. Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives. Sci. Total Environ. 767, 144351. https://doi.org/10.1016/j.scitotenv.2020.144351 (2021).
Google Scholar
Kiran, B. R. & Prasad, M. N. V. Biochar and rice husk ash assisted phytoremediation potentials of Ricinus communis L. for lead-spiked soils. Ecotoxicol Environ Saf 183, 109574. https://doi.org/10.1016/j.ecoenv.2019.109574 (2019).
Google Scholar
Bolan, N. et al. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize?. J. Hazard. Mater. 266, 141–166. https://doi.org/10.1016/j.jhazmat.2013.12.018 (2014).
Google Scholar
Burachevskaya, M. et al. The effect of granular activated carbon and biochar on the availability of Cu and Zn to Hordeum sativum distichum in contaminated soil. Plants https://doi.org/10.3390/plants10050841 (2021).
Google Scholar
Cao, P. et al. Mercapto propyltrimethoxysilane- and ferrous sulfate-modified nano-silica for immobilization of lead and cadmium as well as arsenic in heavy metal-contaminated soil. Environ. Pollut. 266, 115152. https://doi.org/10.1016/j.envpol.2020.115152 (2020).
Google Scholar
Ok, Y. S. et al. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environ. Geochem. Health 33(Suppl 1), 23–30. https://doi.org/10.1007/s10653-010-9364-0 (2011).
Google Scholar
Qin, Y. et al. Dual-wastes derived biochar with tailored surface features for highly efficient p-nitrophenol adsorption. J. Clean. Prod. 353, 131571. https://doi.org/10.1016/j.jclepro.2022.131571 (2022).
Google Scholar
Rajput, V. D. et al. Nano-biochar: A novel solution for sustainable agriculture and environmental remediation. Environ. Res. 210, 112891. https://doi.org/10.1016/j.envres.2022.112891 (2022).
Google Scholar
Ding, Y. et al. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 36, 36. https://doi.org/10.1007/s13593-016-0372-z (2016).
Google Scholar
Oni, B. A., Oziegbe, O. & Olawole, O. O. Significance of biochar application to the environment and economy. Ann. Agric. Sci. 64, 222–236. https://doi.org/10.1016/j.aoas.2019.12.006 (2019).
Google Scholar
He, E. et al. Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars. Sci. Total Environ. 673, 245–253. https://doi.org/10.1016/j.scitotenv.2019.04.037 (2019).
Google Scholar
Netherway, P. et al. Phosphorus-rich biochars can transform lead in an urban contaminated soil. J. Environ. Qual. 48, 1091–1099. https://doi.org/10.2134/jeq2018.09.0324 (2019).
Google Scholar
O’Connor, D. et al. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Sci. Total Environ. 619–620, 815–826. https://doi.org/10.1016/j.scitotenv.2017.11.132 (2018).
Google Scholar
Xu, X. et al. Effect of physicochemical properties of biochar from different feedstock on remediation of heavy metal contaminated soil in mining area. Surf. Interfaces 32, 102058. https://doi.org/10.1016/j.surfin.2022.102058 (2022).
Google Scholar
Melo, L. C. A. et al. Sorption and desorption of cadmium and zinc in two tropical soils amended with sugarcane-straw-derived biochar. J. Soils Sediments 16, 226–234. https://doi.org/10.1007/s11368-015-1199-y (2016).
Google Scholar
Uchimiya, M., Chang, S. & Klasson, K. T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. J. Hazard. Mater. 190, 432–441. https://doi.org/10.1016/j.jhazmat.2011.03.063 (2011).
Google Scholar
Jatav, H. S. et al. Sustainable approach and safe use of biochar and its possible consequences. Sustainability https://doi.org/10.3390/su131810362 (2021).
Google Scholar
Varalta, F. & Sorvari, J. In Organic Waste Composting through Nexus Thinking: Practices, Policies, and Trends (eds Hettiarachchi, H. et al.) 213–232 (Springer International Publishing, 2020).
Google Scholar
Pinotti, L. et al. Recycling food leftovers in feed as opportunity to increase the sustainability of livestock production. J. Clean. Prod. 294, 126290. https://doi.org/10.1016/j.jclepro.2021.126290 (2021).
Google Scholar
Jafri, N., Wong, W. Y., Doshi, V., Yoon, L. W. & Cheah, K. H. A review on production and characterization of biochars for application in direct carbon fuel cells. Process Saf. Environ. Prot. 118, 152–166. https://doi.org/10.1016/j.psep.2018.06.036 (2018).
Google Scholar
Jin, Y. et al. Characterization of biochars derived from various spent mushroom substrates and evaluation of their adsorption performance of Cu(II) ions from aqueous solution. Environ. Res. 196, 110323. https://doi.org/10.1016/j.envres.2020.110323 (2021).
Google Scholar
Tomczyk, A., Sokołowska, Z. & Boguta, P. Biomass type effect on biochar surface characteristic and adsorption capacity relative to silver and copper. Fuel 278, 118168. https://doi.org/10.1016/j.fuel.2020.118168 (2020).
Google Scholar
FAO. Food Outlook – Biannual Report on Global Food Markets: November 2020. Rome. Phytoremediation of copper-contaminated soil by Artemisia absinthium: comparative effect of chelating agents. Environmental Geochemistry and Health. (2020). https://doi.org/10.4060/cb1993en
Russian-Statistical-Year-Book. Statistical handbook. P76 M., 2020 – 700 p. ISBN 978-5-89476-497-9 (2020).
Cheng, C.-H., Lehmann, J., Thies, J. E. & Burton, S. D. Stability of black carbon in soils across a climatic gradient. J. Geophys. Res. Biogeosci. 113, 55. https://doi.org/10.1029/2007JG000642 (2008).
Google Scholar
Singh, B. P., Cowie, A. L. & Smernik, R. J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ. Sci. Technol. 46, 11770–11778. https://doi.org/10.1021/es302545b (2012).
Google Scholar
He, Y. et al. Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. GCB Bioenergy 9, 743–755. https://doi.org/10.1111/gcbb.12376 (2017).
Google Scholar
Janu, R. et al. Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resour. Convers. 4, 36–46. https://doi.org/10.1016/j.crcon.2021.01.003 (2021).
Google Scholar
Tan, X. et al. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125, 70–85. https://doi.org/10.1016/j.chemosphere.2014.12.058 (2015).
Google Scholar
Ni, B.-J. et al. Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere 219, 351–357. https://doi.org/10.1016/j.chemosphere.2018.12.053 (2019).
Google Scholar
Park, J.-H. et al. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 142, 77–83. https://doi.org/10.1016/j.chemosphere.2015.05.093 (2016).
Google Scholar
Methodological-Guidelines. Methodological guidelines for the determination of heavy metals in the soils of agricultural land and crop production – M., TSINAO, 61 (1992)
Zhang, A., Li, X., Xing, J. & Xu, G. Adsorption of potentially toxic elements in water by modified biochar: A review. J. Environ. Chem. Eng. 8, 104196. https://doi.org/10.1016/j.jece.2020.104196 (2020).
Google Scholar
Avramiotis, E., Frontistis, Z., Manariotis, I. D., Vakros, J. & Mantzavinos, D. On the performance of a sustainable rice husk biochar for the activation of persulfate and the degradation of antibiotics. Catalysts 11, 1303 (2021).
Google Scholar
Maiti, S., Dey, S., Purakayastha, S. & Ghosh, B. Physical and thermochemical characterization of rice husk char as a potential biomass energy source. Biores. Technol. 97, 2065–2070. https://doi.org/10.1016/j.biortech.2005.10.005 (2006).
Google Scholar
Herrera, K., Morales, L. F., Tarazona, N. A., Aguado, R. & Saldarriaga, J. F. Use of biochar from rice husk pyrolysis: Part A: Recovery as an adsorbent in the removal of emerging compounds. ACS Omega 7, 7625–7637. https://doi.org/10.1021/acsomega.1c06147 (2022).
Google Scholar
Szewczuk-Karpisz, K., Tomczyk, A., Grygorczuk-Płaneta, K. & Naveed, S. Rhizobium leguminosarum bv. trifolii exopolysaccharide and sunflower husk biochar as factors affecting immobilization of both tetracycline and Cd2+ ions on soil solid phase. J. Soils Sediments 22, 2620–2639. https://doi.org/10.1007/s11368-022-03255-3 (2022).
Google Scholar
Hubetska, T. S., Kobylinska, N. G. & García, J. R. Sunflower biomass power plant by-products: Properties and its potential for water purification of organic pollutants. J. Anal. Appl. Pyrolysis 157, 105237. https://doi.org/10.1016/j.jaap.2021.105237 (2021).
Google Scholar
Braghiroli, F. L. et al. The influence of pilot-scale pyro-gasification and activation conditions on porosity development in activated biochars. Biomass Bioenerg. 118, 105–114. https://doi.org/10.1016/j.biombioe.2018.08.016 (2018).
Google Scholar
Braghiroli, F. L. et al. The conversion of wood residues, using pilot-scale technologies, into porous activated biochars for supercapacitors. J. Porous Mater. 27, 537–548. https://doi.org/10.1007/s10934-019-00823-w (2020).
Google Scholar
Boraah, N., Chakma, S. & Kaushal, P. Attributes of wood biochar as an efficient adsorbent for remediating heavy metals and emerging contaminants from water: A critical review and bibliometric analysis. J. Environ. Chem. Eng. 10, 107825. https://doi.org/10.1016/j.jece.2022.107825 (2022).
Google Scholar
Phillips, C. L. et al. Towards predicting biochar impacts on plant-available soil nitrogen content. Biochar 4, 9. https://doi.org/10.1007/s42773-022-00137-2 (2022).
Google Scholar
Sun, L. & Gong, K. Silicon-based materials from rice husks and their applications. Ind. Eng. Chem. Res. 40, 5861–5877. https://doi.org/10.1021/ie010284b (2001).
Google Scholar
Islam, T. et al. Synthesis of rice husk-derived magnetic biochar through liquefaction to adsorb anionic and cationic dyes from aqueous solutions. Arab. J. Sci. Eng. 46, 233–246. https://doi.org/10.1007/s13369-020-04537-z (2021).
Google Scholar
Mohan, D. et al. Biochar production and applications in soil fertility and carbon sequestration – a sustainable solution to crop-residue burning in India. RSC Adv. 8, 508–520. https://doi.org/10.1039/C7RA10353K (2018).
Google Scholar
Li, F. et al. Preparation and characterization of biochars from Eichornia crassipes for cadmium removal in aqueous solutions. PLoS ONE 11, e0148132. https://doi.org/10.1371/journal.pone.0148132 (2016).
Google Scholar
Song, H. et al. Potential of novel biochars produced from invasive aquatic species outside food chain in removing ammonium nitrogen: Comparison with conventional biochars and clinoptilolite. Sustainability https://doi.org/10.3390/su11247136 (2019).
Google Scholar
Yang, G. et al. Effects of pyrolysis temperature on the physicochemical properties of biochar derived from vermicompost and its potential use as an environmental amendment. RSC Adv. 5, 40117–40125. https://doi.org/10.1039/C5RA02836A (2015).
Google Scholar
Enders, A., Hanley, K., Whitman, T., Joseph, S. & Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 114, 644–653. https://doi.org/10.1016/j.biortech.2012.03.022 (2012).
Google Scholar
Zhang, Y., Wang, J. & Feng, Y. The effects of biochar addition on soil physicochemical properties: A review. CATENA 202, 105284. https://doi.org/10.1016/j.catena.2021.105284 (2021).
Google Scholar
Özçimen, D. & Ersoy-Meriçboyu, A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renew. Energy 35, 1319–1324. https://doi.org/10.1016/j.renene.2009.11.042 (2010).
Google Scholar
Lin, Q. et al. Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. Sci. Total Environ. 826, 153956. https://doi.org/10.1016/j.scitotenv.2022.153956 (2022).
Google Scholar
Yang, H. et al. Thermogravimetric analysis−fourier transform infrared analysis of palm oil waste pyrolysis. Energy Fuels 18, 1814–1821. https://doi.org/10.1021/ef030193m (2004).
Google Scholar
Pasangulapati, V. et al. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Biores. Technol. 114, 663–669. https://doi.org/10.1016/j.biortech.2012.03.036 (2012).
Google Scholar
Kim, P. et al. Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis. Energy Fuels 25, 4693–4703. https://doi.org/10.1021/ef200915s (2011).
Google Scholar
Keiluweit, M., Nico, P. S., Johnson, M. G. & Kleber, M. dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44, 1247–1253. https://doi.org/10.1021/es9031419 (2010).
Google Scholar
Wijeyawardana, P. et al. Removal of Cu, Pb and Zn from stormwater using an industrially manufactured sawdust and paddy husk derived biochar. Environ. Technol. Innov. 28, 102640. https://doi.org/10.1016/j.eti.2022.102640 (2022).
Google Scholar
Kołodyńska, D., Krukowska, J. & Thomas, P. Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem. Eng. J. 307, 353–363. https://doi.org/10.1016/j.cej.2016.08.088 (2017).
Google Scholar
Uchimiya, M. et al. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J. Agric. Food Chem. 58, 5538–5544. https://doi.org/10.1021/jf9044217 (2010).
Google Scholar
Misono, M., Ochiai, E. I., Saito, Y. & Yoneda, Y. A new dual parameter scale for the strength of lewis acids and bases with the evaluation of their softness. J. Inorg. Nucl. Chem. 29, 2685–2691. https://doi.org/10.1016/0022-1902(67)80006-X (1967).
Google Scholar
McBride, M. B. Environmental Chemistry of Soils (Oxford University Press, 1994).
Basta, N. T. & Tabatabai, M. A. Effect of cropping systems on adsorption of metals by soils: III. Competitive adsorption1. Soil Sci. 153, 331–337 (1992).
Google Scholar
Sposito, G. The Chemistry of Soils (Oxford University Press, 2016).
Bauer, T. V. et al. Application of XAFS and XRD methods for describing the copper and zinc adsorption characteristics in hydromorphic soils. Environ. Geochem. Health 44, 335–347. https://doi.org/10.1007/s10653-020-00773-2 (2022).
Google Scholar
Abd-Elfattah, A. L. Y. & Wada, K. Adsorption of lead, copper, zinc, cobalt, and cadmium by soils that differ in cation-exchange materials. J. Soil Sci. 32, 271–283. https://doi.org/10.1111/j.1365-2389.1981.tb01706.x (1981).
Google Scholar
Etesami, H., Fatemi, H. & Rizwan, M. Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. Ecotoxicol. Environ. Saf. 225, 112769. https://doi.org/10.1016/j.ecoenv.2021.112769 (2021).
Google Scholar
Soria, R. I., Rolfe, S. A., Betancourth, M. P. & Thornton, S. F. The relationship between properties of plant-based biochars and sorption of Cd(II), Pb(II) and Zn(II) in soil model systems. Heliyon 6, e05388. https://doi.org/10.1016/j.heliyon.2020.e05388 (2020).
Google Scholar
Alfarra, A., Frackowiak, E. & Béguin, F. The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons. Appl. Surf. Sci. 228, 84–92. https://doi.org/10.1016/j.apsusc.2003.12.033 (2004).
Google Scholar
Hu, J., Zhou, X., Shi, Y., Wang, X. & Li, H. Enhancing biochar sorption properties through self-templating strategy and ultrasonic fore-modified pre-treatment: Characteristic, kinetic and mechanism studies. Sci. Total Environ. 769, 144574. https://doi.org/10.1016/j.scitotenv.2020.144574 (2021).
Google Scholar
Ward, J., Rasul, M. G. & Bhuiya, M. M. K. Energy recovery from biomass by fast pyrolysis. Proced. Eng. 90, 669–674. https://doi.org/10.1016/j.proeng.2014.11.791 (2014).
Google Scholar
Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M. & Usman, A. R. A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Biores. Technol. 131, 374–379. https://doi.org/10.1016/j.biortech.2012.12.165 (2013).
Google Scholar
Calvelo Pereira, R. et al. Contribution to characterisation of biochar to estimate the labile fraction of carbon. Org. Geochem. 42, 1331–1342. https://doi.org/10.1016/j.orggeochem.2011.09.002 (2011).
Google Scholar
Vorob’eva, L. A. Theory and Practice Chemical Analysis of Soils (GEOS Press, Moscow, 2006).
Pinskii, D. L. et al. Copper adsorption by chernozem soils and parent rocks in Southern Russia. Geochem. Int. 56, 266–275. https://doi.org/10.1134/S0016702918030072 (2018).
Google Scholar
Wang, Q., Wang, B., Lee, X., Lehmann, J. & Gao, B. Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH. Sci. Total Environ. 634, 188–194. https://doi.org/10.1016/j.scitotenv.2018.03.189 (2018).
Google Scholar
Pourret, O. & Houben, D. Characterization of metal binding sites onto biochar using rare earth elements as a fingerprint. Heliyon 4, e00543. https://doi.org/10.1016/j.heliyon.2018.e00543 (2018).
Google Scholar
Huang, L. et al. High-resolution insight into the competitive adsorption of heavy metals on natural sediment by site energy distribution. Chemosphere 197, 411–419. https://doi.org/10.1016/j.chemosphere.2018.01.056 (2018).
Google Scholar
Ming, H. et al. Competitive sorption of cadmium and zinc in contrasting soils. Geoderma 268, 60–68. https://doi.org/10.1016/j.geoderma.2016.01.021 (2016).
Google Scholar
Musso, T. B., Parolo, M. E., Pettinari, G. & Francisca, F. M. Cu(II) and Zn(II) adsorption capacity of three different clay liner materials. J. Environ. Manag. 146, 50–58. https://doi.org/10.1016/j.jenvman.2014.07.026 (2014).
Google Scholar
Cui, H. et al. Immobilization of Cu and Cd in a contaminated soil: One- and four-year field effects. J. Soils Sediments 14, 1397–1406. https://doi.org/10.1007/s11368-014-0882-8 (2014).
Google Scholar
Elbana, T. A. et al. Freundlich sorption parameters for cadmium, copper, nickel, lead, and zinc for different soils: Influence of kinetics. Geoderma 324, 80–88. https://doi.org/10.1016/j.geoderma.2018.03.019 (2018).
Google Scholar
Source: Ecology - nature.com